Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,679
result(s) for
"Ni, Xiang"
Sort by:
Demonstration of a quantized acoustic octupole topological insulator
by
Li, Mengyao
,
Weiner, Matthew
,
Ni, Xiang
in
639/301/119/2792/4128
,
639/766/25/3927
,
Acoustic coupling
2020
Recently introduced quantized multipole topological insulators (QMTIs) reveal new types of gapped boundary states, which themselves represent lower-dimensional topological phases and host symmetry protected zero-dimensional corner states. Inspired by these predictions, tremendous efforts have been devoted to the experimental observation of quantized quadrupole topological phase. However, due to stringent requirements of anti-commuting reflection symmetries, it is challenging to achieve higher-order quantized multipole moments, such as octupole moments, in a three-dimensional structure. Here, we overcome this challenge, and experimentally realize the acoustic analogue of a quantized octupole topological insulator using negatively coupled resonators. We confirm by first-principle studies that our design possesses a quantized octupole topological phase, and experimentally demonstrate spectroscopic evidence of a hierarchy of boundary modes, observing 3
rd
order topological corner states. Furthermore, we reveal topological phase transitions from higher- to lower-order multipole moments. Our work offers a pathway to explore higher-order topological states in 3D classical platforms.
Although multipole topological insulators have been theoretically described and experimentally observed in 2D, third-order topological insulators in 3D have not been observed yet. Here, the authors realize for the first time a quantized octupole 3D topological state in an acoustic metamaterial.
Journal Article
Observation of higher-order topological acoustic states protected by generalized chiral symmetry
by
Weiner, Matthew
,
Khanikaev, Alexander B
,
Ni, Xiang
in
Acoustic properties
,
Acoustics
,
Energy dissipation
2019
Topological systems are inherently robust to disorder and continuous perturbations, resulting in dissipation-free edge transport of electrons in quantum solids, or reflectionless guiding of photons and phonons in classical wave systems characterized by topological invariants. Recently, a new class of topological materials characterized by bulk polarization has been introduced, and was shown to host higher-order topological corner states. Here, we demonstrate theoretically and experimentally that 3D-printed two-dimensional acoustic meta-structures can possess nontrivial bulk topological polarization and host one-dimensional edge and Wannier-type second-order zero-dimensional corner states with unique acoustic properties. We observe second-order topological states protected by a generalized chiral symmetry of the meta-structure, which are localized at the corners and are pinned to ‘zero energy’. Interestingly, unlike the ‘zero energy’ states protected by conventional chiral symmetry, the generalized chiral symmetry of our three-atom sublattice enables their spectral overlap with the continuum of bulk states without leakage. Our findings offer possibilities for advanced control of the propagation and manipulation of sound, including within the radiative continuum.
Journal Article
Higher-order topological states in photonic kagome crystals with long-range interactions
by
Li, Mengyao
,
Alù Andrea
,
Khanikaev, Alexander B
in
Approximation
,
Condensed matter physics
,
Crystal defects
2020
Photonic topological insulators enable topological boundary modes that are resilient to defects and disorder, irrespective of manufacturing precision. This property is known as topological protection. Although originally limited to dimensionality of modes one lower than that of topological insulators, the recently discovered higher-order topological insulators (HOTIs) offer topological protection over an extended range of dimensionalities. Here, we introduce a photonic HOTI with kagome lattice that exhibits topological bulk polarization, leading to the emergence of one-dimensional edge states, as well as higher-order zero-dimensional states confined to the corners of the structure. Interestingly, in addition to the corner states due to nearest-neighbour interactions, we discover a new class of topological corner states induced by long-range interactions and specific to photonic systems. Our findings demonstrate that photonic HOTIs possess richer physics than their condensed-matter counterparts, offering opportunities for engineering novel designer electromagnetic states with unique topological robustness.One- and zero-dimensional optical states are revealed in photonic higher-order topological insulators.
Journal Article
Exceptional points and non-Hermitian photonics at the nanoscale
2023
Exceptional points (EPs) arising in non-Hermitian systems have led to a variety of intriguing wave phenomena, and have been attracting increased interest in various physical platforms. In this Review, we highlight the latest fundamental advances in the context of EPs in various nanoscale systems, and overview the theoretical progress related to EPs, including higher-order EPs, bulk Fermi arcs and Weyl exceptional rings. We peek into EP-associated emerging technologies, in particular focusing on the influence of noise for sensing near EPs, improving the efficiency in asymmetric transmission based on EPs, optical isolators in nonlinear EP systems and novel concepts to implement EPs in topological photonics. We also discuss the constraints and limitations of the applications relying on EPs, and offer parting thoughts about promising ways to tackle them for advanced nanophotonic applications.
This Review discusses the latest theoretical progress related to exceptional points in non-Hermitian physics and the associated implications for emerging technologies in nanophotonics.
Journal Article
Pseudo-spin–valley coupled edge states in a photonic topological insulator
2018
Pseudo-spin and valley degrees of freedom engineered in photonic analogues of topological insulators provide potential approaches to optical encoding and robust signal transport. Here we observe a ballistic edge state whose spin–valley indices are locked to the direction of propagation along the interface between a valley photonic crystal and a metacrystal emulating the quantum spin–Hall effect. We demonstrate the inhibition of inter-valley scattering at a Y-junction formed at the interfaces between photonic topological insulators carrying different spin–valley Chern numbers. These results open up the possibility of using the valley degree of freedom to control the flow of optical signals in 2D structures.
Valleys in the photonic band structure provide an additional degree of freedom to engineer topological photonic structures and devices. Here, Kang et al. demonstrate that inter-valley scattering is inhibited at a Y-junction between three sections with different valley topology.
Journal Article
Hyperbolic shear polaritons in low-symmetry crystals
by
Guangwei Hu
,
Mathias Schubert
,
Joshua D. Caldwell
in
140/125
,
639/301/1019/1021
,
639/624/1107/527/2257
2022
The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase
1
–
4
. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light–matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales
5
. Here we show that monoclinic crystals can support hyperbolic shear polaritons, a new polariton class arising in the mid-infrared to far-infrared due to shear phenomena in the dielectric response. This feature emerges in materials in which the dielectric tensor cannot be diagonalized, that is, in low-symmetry monoclinic and triclinic crystals in which several oscillators with non-orthogonal relative orientations contribute to the optical response
6
,
7
. Hyperbolic shear polaritons complement previous observations of hyperbolic phonon polaritons in orthorhombic
1
,
3
,
4
and hexagonal
8
,
9
crystal systems, unveiling new features, such as the continuous evolution of their propagation direction with frequency, tilted wavefronts and asymmetric responses. The interplay between diagonal loss and off-diagonal shear phenomena in the dielectric response of these materials has implications for new forms of non-Hermitian and topological photonic states. We anticipate that our results will motivate new directions for polariton physics in low-symmetry materials, which include geological minerals
10
, many common oxides
11
and organic crystals
12
, greatly expanding the material base and extending design opportunities for compact photonic devices.
Shear phenomena in the infrared dielectric response of a monoclinic crystal are shown to unveil a new polariton class termed hyperbolic shear polariton that can emerge in any low-symmetry monoclinic or triclinic system.
Journal Article
Orbital topological edge states and phase transitions in one-dimensional acoustic resonator chains
2023
Topological phases of matter have attracted significant attention in recent years, due to the unusual robustness of their response to defects and disorder. Various research efforts have been exploring classical and quantum topological wave phenomena in engineered materials, in which different degrees of freedom (DoFs) – for the most part based on broken crystal symmetries associated with pseudo-spins – induce synthetic gauge fields that support topological phases and unveil distinct forms of wave propagation. However, spin is not the only viable option to induce topological effects. Intrinsic orbital DoFs in spinless systems may offer a powerful alternative platform, mostly unexplored to date. Here we reveal orbital-selective wave-matter interactions in acoustic systems supporting multiple orbital DoFs, and report the experimental demonstration of disorder-immune orbital-induced topological edge states in a zigzag acoustic 1D spinless lattice. This work expands the study of topological phases based on orbitals, paving the way to explore other orbital-dependent phenomena in spinless systems.
The researchers demonstrate orbital-dependent sound-matter interactions in acoustic systems. They unveil duality symmetry and topological phase transitions beyond the conventional SSH model expanding the fundamental understanding of sound-matter interaction.
Journal Article
Floquet parity-time symmetry in integrated photonics
by
Ziegler, Klaus
,
Ni, Xiang
,
Jia, Yuechen
in
639/624/1075/1080
,
639/624/400/1021
,
639/766/1130/2799
2024
Parity-time (PT) symmetry has been unveiling new photonic regimes in non-Hermitian systems, with opportunities for lasing, sensing and enhanced light-matter interactions. The most exotic responses emerge at the exceptional point (EP) and in the broken PT-symmetry phase, yet in conventional PT-symmetric systems these regimes require large levels of gain and loss, posing remarkable challenges in practical settings. Floquet PT-symmetry, which may be realized by periodically flipping the effective gain/loss distribution in time, can relax these requirements and tailor the EP and PT-symmetry phases through the modulation period. Here, we explore Floquet PT-symmetry in an integrated photonic waveguide platform, in which the role of time is replaced by the propagation direction. We experimentally demonstrate spontaneous PT-symmetry breaking at small gain/loss levels and efficient control of amplification and suppression through the excitation ports. Our work introduces the advantages of Floquet PT-symmetry in a practical integrated photonic setting, enabling a powerful platform to observe PT-symmetric phenomena and leverage their extreme features, with applications in nanophotonics, coherent control of nanoscale light amplification and routing.
Here the authors unveil an approach rooted in non-Hermitian physics to precisely control light amplification in an integrated photonic platform, paving the way for innovative on-chip functionalities, like coherent control of light amplification and routing.
Journal Article
Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal
by
Qing Dai
,
Guangwei Hu
,
Joshua D. Caldwell
in
639/624/400/2797
,
639/766/400/2797
,
639/925/930/12
2023
Various optical crystals possess permittivity components of opposite signs along different principal directions in the mid-infrared regime, exhibiting exotic anisotropic phonon resonances. Such materials with hyperbolic polaritons—hybrid light–matter quasiparticles with open isofrequency contours—feature large-momenta optical modes and wave confinement that make them promising for nanophotonic on-chip technologies. So far, hyperbolic polaritons have been observed and characterized in crystals with high symmetry including hexagonal (boron nitride), trigonal (calcite) and orthorhombic (α-MoO
3
or α-V
2
O
5
) crystals, where they obey certain propagation patterns. However, lower-symmetry materials such as monoclinic crystals were recently demonstrated to offer richer opportunities for polaritonic phenomena. Here, using scanning near-field optical microscopy, we report the direct real-space nanoscale imaging of symmetry-broken hyperbolic phonon polaritons in monoclinic CdWO
4
crystals, and showcase inherently asymmetric polariton excitation and propagation associated with the nanoscale shear phenomena. We also introduce a quantitative theoretical model to describe these polaritons that leads to schemes to enhance crystal asymmetry via the damping loss of phonon modes. Ultimately, our findings show that polaritonic nanophotonics is attainable using natural materials with low symmetry, favouring a versatile and general way to manipulate light at the nanoscale.
Scanning near-field optical microscopy measurements show that polaritonic nanophotonics is attainable in natural low-symmetry materials, leading to a general way to manipulate light at the nanoscale.
Journal Article
Far-field probing of leaky topological states in all-dielectric metasurfaces
2018
Topological phase transitions in condensed matter systems give rise to exotic states of matter such as topological insulators, superconductors, and superfluids. Photonic topological systems open a whole new realm of research and technological opportunities, exhibiting a number of important distinctions from their condensed matter counterparts. Photonic modes can leak into free space, which makes it possible to probe topological photonic phases by spectroscopic means via Fano resonances. Based on this idea, we develop a technique to retrieve the topological properties of all-dielectric metasurfaces from the measured far-field scattering characteristics. Collected angle-resolved spectra provide the momentum-dependent frequencies and lifetimes of the photonic modes that enable the retrieval of the effective Hamiltonian and extraction of the topological invariant. Our results demonstrate how the topological states of open non-Hermitian systems can be explored via far-field measurements, thus paving a way to the design of metasurfaces with unique scattering characteristics controlled via topological effects.
Topological modes in photonics systems are not completely confined to the structure but can leak into free space. Here, Gorlach et al. exploit these leaky modes to probe the topological properties of a dielectric metasurface from far-field scattering measurements.
Journal Article