Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
122
result(s) for
"Nicholas G. Reich"
Sort by:
Evaluating epidemic forecasts in an interval format
by
Bracher, Johannes
,
Reich, Nicholas G.
,
Gneiting, Tilmann
in
Communicable Diseases - epidemiology
,
Coronaviruses
,
COVID-19
2021
For practical reasons, many forecasts of case, hospitalization, and death counts in the context of the current Coronavirus Disease 2019 (COVID-19) pandemic are issued in the form of central predictive intervals at various levels. This is also the case for the forecasts collected in the COVID-19 Forecast Hub ( https://covid19forecasthub.org/ ). Forecast evaluation metrics like the logarithmic score, which has been applied in several infectious disease forecasting challenges, are then not available as they require full predictive distributions. This article provides an overview of how established methods for the evaluation of quantile and interval forecasts can be applied to epidemic forecasts in this format. Specifically, we discuss the computation and interpretation of the weighted interval score, which is a proper score that approximates the continuous ranked probability score. It can be interpreted as a generalization of the absolute error to probabilistic forecasts and allows for a decomposition into a measure of sharpness and penalties for over- and underprediction.
Journal Article
An expert judgment model to predict early stages of the COVID-19 pandemic in the United States
by
Reich, Nicholas G.
,
McAndrew, Thomas
in
Assessments
,
Biology and Life Sciences
,
Computer applications
2022
From February to May 2020, experts in the modeling of infectious disease provided quantitative predictions and estimates of trends in the emerging COVID-19 pandemic in a series of 13 surveys. Data on existing transmission patterns were sparse when the pandemic began, but experts synthesized information available to them to provide quantitative, judgment-based assessments of the current and future state of the pandemic. We aggregated expert predictions into a single “linear pool” by taking an equally weighted average of their probabilistic statements. At a time when few computational models made public estimates or predictions about the pandemic, expert judgment provided (a) falsifiable predictions of short- and long-term pandemic outcomes related to reported COVID-19 cases, hospitalizations, and deaths, (b) estimates of latent viral transmission, and (c) counterfactual assessments of pandemic trajectories under different scenarios. The linear pool approach of aggregating expert predictions provided more consistently accurate predictions than any individual expert, although the predictive accuracy of a linear pool rarely provided the most accurate prediction. This work highlights the importance that an expert linear pool could play in flexibly assessing a wide array of risks early in future emerging outbreaks, especially in settings where available data cannot yet support data-driven computational modeling.
Journal Article
Prediction of infectious disease epidemics via weighted density ensembles
by
Reich, Nicholas G.
,
Ray, Evan L.
in
Artificial intelligence
,
Communicable diseases
,
Data mining
2018
Accurate and reliable predictions of infectious disease dynamics can be valuable to public health organizations that plan interventions to decrease or prevent disease transmission. A great variety of models have been developed for this task, using different model structures, covariates, and targets for prediction. Experience has shown that the performance of these models varies; some tend to do better or worse in different seasons or at different points within a season. Ensemble methods combine multiple models to obtain a single prediction that leverages the strengths of each model. We considered a range of ensemble methods that each form a predictive density for a target of interest as a weighted sum of the predictive densities from component models. In the simplest case, equal weight is assigned to each component model; in the most complex case, the weights vary with the region, prediction target, week of the season when the predictions are made, a measure of component model uncertainty, and recent observations of disease incidence. We applied these methods to predict measures of influenza season timing and severity in the United States, both at the national and regional levels, using three component models. We trained the models on retrospective predictions from 14 seasons (1997/1998-2010/2011) and evaluated each model's prospective, out-of-sample performance in the five subsequent influenza seasons. In this test phase, the ensemble methods showed average performance that was similar to the best of the component models, but offered more consistent performance across seasons than the component models. Ensemble methods offer the potential to deliver more reliable predictions to public health decision makers.
Journal Article
Preprints: An underutilized mechanism to accelerate outbreak science
by
Meyers, Lauren Ancel
,
Johansson, Michael A.
,
Reich, Nicholas G.
in
Biology and life sciences
,
Biomedical Research - methods
,
Biomedical Research - standards
2018
In an Essay, Michael Johansson and colleagues advocate the posting of research studies addressing infectious disease outbreaks as preprints.In an Essay, Michael Johansson and colleagues advocate the posting of research studies addressing infectious disease outbreaks as preprints.
Journal Article
A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States
by
Yamana, Teresa K.
,
Reich, Nicholas G.
,
Tushar, Abhinav
in
60 APPLIED LIFE SCIENCES
,
Accuracy
,
Biological Science
2019
Influenza infects an estimated 9–35 million individuals each year in the United States and is a contributing cause for between 12,000 and 56,000 deaths annually. Seasonal outbreaks of influenza are common in temperate regions of the world, with highest incidence typically occurring in colder and drier months of the year. Real-time forecasts of influenza transmission can inform public health response to outbreaks. We present the results of a multiinstitution collaborative effort to standardize the collection and evaluation of forecasting models for influenza in the United States for the 2010/2011 through 2016/2017 influenza seasons. For these seven seasons, we assembled weekly real-time forecasts of seven targets of public health interest from 22 different models. We compared forecast accuracy of each model relative to a historical baseline seasonal average. Across all regions of the United States, over half of the models showed consistently better performance than the historical baseline when forecasting incidence of influenza-like illness 1 wk, 2 wk, and 3 wk ahead of available data and when forecasting the timing and magnitude of the seasonal peak. In some regions, delays in data reporting were strongly and negatively associated with forecast accuracy. More timely reporting and an improved overall accessibility to novel and traditional data sources are needed to improve forecasting accuracy and its integration with real-time public health decision making.
Journal Article
Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S
by
Yamana, Teresa K.
,
Reich, Nicholas G.
,
Tushar, Abhinav
in
Analytical methods
,
BASIC BIOLOGICAL SCIENCES
,
Biological Science
2019
Seasonal influenza results in substantial annual morbidity and mortality in the United States and worldwide. Accurate forecasts of key features of influenza epidemics, such as the timing and severity of the peak incidence in a given season, can inform public health response to outbreaks. As part of ongoing efforts to incorporate data and advanced analytical methods into public health decision-making, the United States Centers for Disease Control and Prevention (CDC) has organized seasonal influenza forecasting challenges since the 2013/2014 season. In the 2017/2018 season, 22 teams participated. A subset of four teams created a research consortium called the FluSight Network in early 2017. During the 2017/2018 season they worked together to produce a collaborative multi-model ensemble that combined 21 separate component models into a single model using a machine learning technique called stacking. This approach creates a weighted average of predictive densities where the weight for each component is determined by maximizing overall ensemble accuracy over past seasons. In the 2017/2018 influenza season, one of the largest seasonal outbreaks in the last 15 years, this multi-model ensemble performed better on average than all individual component models and placed second overall in the CDC challenge. It also outperformed the baseline multi-model ensemble created by the CDC that took a simple average of all models submitted to the forecasting challenge. This project shows that collaborative efforts between research teams to develop ensemble forecasting approaches can bring measurable improvements in forecast accuracy and important reductions in the variability of performance from year to year. Efforts such as this, that emphasize real-time testing and evaluation of forecasting models and facilitate the close collaboration between public health officials and modeling researchers, are essential to improving our understanding of how best to use forecasts to improve public health response to seasonal and emerging epidemic threats.
Journal Article
Incubation periods of acute respiratory viral infections: a systematic review
2009
Knowledge of the incubation period is essential in the investigation and control of infectious disease, but statements of incubation period are often poorly referenced, inconsistent, or based on limited data. In a systematic review of the literature on nine respiratory viral infections of public-health importance, we identified 436 articles with statements of incubation period and 38 with data for pooled analysis. We fitted a log-normal distribution to pooled data and found the median incubation period to be 5·6 days (95% CI 4·8–6·3) for adenovirus, 3·2 days (95% CI 2·8–3·7) for human coronavirus, 4·0 days (95% CI 3·6–4·4) for severe acute respiratory syndrome coronavirus, 1·4 days (95% CI 1·3–1·5) for influenza A, 0·6 days (95% CI 0·5–0·6) for influenza B, 12·5 days (95% CI 11·8–13·3) for measles, 2·6 days (95% CI 2·1–3·1) for parainfluenza, 4·4 days (95% CI 3·9–4·9) for respiratory syncytial virus, and 1·9 days (95% CI 1·4–2·4) for rhinovirus. When using the incubation period, it is important to consider its full distribution: the right tail for quarantine policy, the central regions for likely times and sources of infection, and the full distribution for models used in pandemic planning. Our estimates combine published data to give the detail necessary for these and other applications.
Journal Article
Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico
by
Johansson, Michael A.
,
Reich, Nicholas G.
,
Hota, Aditi
in
631/114/2397
,
692/699/255/2514
,
Climate
2016
Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction
model evaluation
, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model.
Journal Article
Optimizing Disease Outbreak Forecast Ensembles
by
Kim, Minsu
,
Meyers, Lauren Ancel
,
Reich, Nicholas G.
in
Collaboration
,
COVID-19
,
COVID-19 - epidemiology
2024
On the basis of historical influenza and COVID-19 forecasts, we found that more than 3 forecast models are needed to ensure robust ensemble accuracy. Additional models can improve ensemble performance, but with diminishing accuracy returns. This understanding will assist with the design of current and future collaborative infectious disease forecasting efforts.
Journal Article
Using “outbreak science” to strengthen the use of models during epidemics
by
Maljkovic Berry, Irina
,
Reich, Nicholas G.
,
Morton, Lindsay
in
631/114/2397
,
639/705
,
692/699/255
2019
Infectious disease modeling has played a prominent role in recent outbreaks, yet integrating these analyses into public health decision-making has been challenging. We recommend establishing ‘outbreak science’ as an inter-disciplinary field to improve applied epidemic modeling.
Journal Article