Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
181 result(s) for "Nicholson, Benjamin"
Sort by:
Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus
The PIWI-interacting RNA (piRNA) pathway prevents endogenous genomic parasites, i.e. transposable elements, from damaging the genetic material of animal gonadal cells. Specific regions in the genome, called piRNA clusters, are thought to define each species’ piRNA repertoire and therefore its capacity to recognize and silence specific transposon families. The unistrand cluster flamenco ( flam ) is essential in the somatic compartment of the Drosophila ovary to restrict Gypsy -family transposons from infecting the neighbouring germ cells. Disruption of flam results in transposon de-repression and sterility, yet it remains unknown whether this silencing mechanism is present more widely. Here, we systematically characterise 119 Drosophila species and identify five additional flam -like clusters separated by up to 45 million years of evolution. Small RNA-sequencing validated these as bona-fide unistrand piRNA clusters expressed in somatic cells of the ovary, where they selectively target transposons of the Gypsy family. Together, our study provides compelling evidence of a widely conserved transposon silencing mechanism that co-evolved with virus-like Gypsy -family transposons. To control transposable elements, fruit flies rely on distinct genomic regions called piRNA clusters. Here, new piRNA clusters were identified across diverse Drosophila species, displaying a conserved and specialised role in the control of endogenous retroviruses in ovarian somatic cells.
A review of clinical trials of anti-VEGF agents for diabetic retinopathy
Background Diabetic retinopathy (DR) is a leading cause of vision loss in the working-age population worldwide. Many observational and preclinical studies have implicated vascular endothelial growth factor (VEGF) in the pathogenesis of DR, and recent successes with anti-VEGF therapy for age-related macular degeneration (AMD) have prompted research into the application of anti-VEGF drugs to DR. Here we review the numerous early studies that suggest an important potential role for anti-VEGF agents in the management of diabetic retinopathy. Conclusions For diabetic macular edema, phase II trials of intravitreal pegaptanib and intravitreal ranibizumab have shown short-term benefit in visual acuity. Intravitreal bevacizumab also has been shown to have beneficial short-term effects on both visual acuity and retinal thickness. For proliferative diabetic retinopathy (PDR), early studies suggest that intravitreal bevacizumab temporarily decreases leakage from diabetic neovascular lesions, but this treatment may be associated with tractional retinal detachment (TRD). Furthermore, several studies indicate that bevacizumab is likely to prove a helpful adjunct to diabetic pars plana vitrectomy (PPV) for TRD. Finally, three small series suggest a potential beneficial effect of a single dose of bevacizumab to prevent worsening of DME after cataract surgery. Use of anti-VEGF medications for any of these indications is off-label. Despite promising early reports on the safety of these medications, we eagerly await the results of large, controlled trials to substantiate the safety and efficacy of anti-VEGF drugs for diabetic retinopathy.
The Multifaceted Roles of USP7: New Therapeutic Opportunities
The deubiquitylating enzyme USP7 (HAUSP) sits at a critical node regulating the activities of numerous proteins broadly characterized as tumor suppressors, DNA repair proteins, immune responders, viral proteins, and epigenetic modulators. Aberrant USP7 activity may promote oncogenesis and viral disease making it a compelling target for therapeutic intervention. Disclosed drug discovery programs have identified inhibitors of USP7 such as P005091 with cellular proof of concept and anti-proliferative activity in cancer models. Taken together, USP7 inhibitors hold promise as a new strategy for the treatment of disease.
Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target
Pancreatic ductal adenocarcinoma (PDAC) lethality is due to metastatic dissemination. Characterization of rare, heterogeneous circulating tumor cells (CTCs) can provide insight into metastasis and guide development of novel therapies. Using the CTC-iChip to purify CTCs from PDAC patients for RNA-seq characterization, we identify three major correlated gene sets, with stemness genes LIN28B/KLF4 , WNT5A , and LGALS3 enriched in each correlated gene set; only LIN28B CTC expression was prognostic. CRISPR knockout of LIN28B —an oncofetal RNA-binding protein exerting diverse effects via negative regulation of let-7 miRNAs and other RNA targets—in cell and animal models confers a less aggressive/metastatic phenotype. This correlates with de-repression of let-7 miRNAs and is mimicked by silencing of downstream let-7 target HMGA2 or chemical inhibition of LIN28B/let-7 binding. Molecular characterization of CTCs provides a unique opportunity to correlated gene set metastatic profiles, identify drivers of dissemination, and develop therapies targeting the “seeds” of metastasis. Metastatic dissemination contributes to the lethality in pancreatic ductal adenocarcinoma (PDAC). Here, the authors perform RNA-sequencing on patient derived circulating tumor cells (CTCs) and identify three major CTC subgroups, and show the therapeutic potential of targeting LIN28B/let-7 pathway to halt cancer metastasis.
Targeting breast and pancreatic cancer metastasis using a dual-cadherin antibody
The successful application of antibody-based therapeutics in either primary or metastatic cancer depends upon the selection of rare cell surface epitopes that distinguish cancer cells from surrounding normal epithelial cells. By contrast, as circulating tumor cells (CTCs) transit through the bloodstream, they are surrounded by hematopoietic cells with dramatically distinct cell surface proteins, greatly expanding the number of targetable epitopes. Here, we show that an antibody (23C6) against cadherin proteins effectively suppresses blood-borne metastasis in mouse isogenic and xenograft models of triple negative breast and pancreatic cancers. The 23C6 antibody is remarkable in that it recognizes both the epithelial E-cadherin (CDH1) and mesenchymal OB-cadherin (CDH11), thus overcoming considerable heterogeneity across tumor cells. Despite its efficacy against single cells in circulation, the antibody does not suppress primary tumor formation, nor does it elicit detectable toxicity in normal epithelial organs, where cadherins may be engaged within intercellular junctions and hence inaccessible for antibody binding. Antibody-mediated suppression of metastasis is comparable in matched immunocompetent and immunodeficient mouse models. Together, these studies raise the possibility of antibody targeting CTCs within the vasculature, thereby suppressing blood-borne metastasis.
A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells
Background Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. Results We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. Conclusions These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
FlaHMM: unistrand flamenco-like piRNA cluster prediction in Drosophila species using hidden Markov models
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that are essential for transposon control in animal gonads. In Drosophila ovarian somatic cells, piRNAs are transcribed from large genomic regions called piRNA clusters, which are enriched for transposon fragments and act as a memory of past invasions. Despite being widely present across Drosophila species, somatic piRNA clusters are difficult to identify and study due to their lack of sequence conservation and limited synteny. Current identification methods rely on either extensive manual curation or availability of high-throughput small RNA sequencing data, limiting large-scale comparative studies. We now present FlaHMM, a hidden Markov model developed to automate genomic annotation of flamenco-like unistrand piRNA clusters in Drosophila species, requiring only a genome assembly and transposon annotations. FlaHMM uses transposable element content across 5- or 10-kb bins, which can be calculated from genome sequence alone, and is thus able to detect candidate piRNA clusters without the need to obtain flies and experimentally perform small RNA sequencing. We show that FlaHMM performs on par with piRNA-guided or manual methods, and thus provides a scalable and efficient approach to piRNA cluster annotation in new genome assemblies. FlaHMM is freely available at https://github.com/Hannon-lab/FlaHMM under an MIT licence.
Recurrent activity in neuronal avalanches
A new statistical analysis of large neuronal avalanches observed in mouse and rat brain tissues reveals a substantial degree of recurrent activity and cyclic patterns of activation not seen in smaller avalanches. To explain these observations, we adapted a model of structural weakening in materials. In this model, dynamical weakening of neuron firing thresholds closely replicates experimental avalanche size distributions, firing number distributions, and patterns of cyclic activity. This agreement between model and data suggests that a mechanism like dynamical weakening plays a key role in recurrent activity found in large neuronal avalanches. We expect these results to illuminate the causes and dynamics of large avalanches, like those seen in seizures.
Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases
Recent advances in the development and discovery of pharmacological interventions within the ubiquitin–proteasome system (UPS) have uncovered an enormous potential for possible novel treatments of neurodegenerative disease, cancer, immunological disorder and microbial infection. Interference with proteasome activity, although initially considered unlikely to be exploitable clinically, has already proved to be very effective against haematological malignancies, and more specific derivatives that target subsets of proteasomes are emerging. Recent small-molecule screens have revealed inhibitors against ubiquitin-conjugating and -deconjugating enzymes, many of which have been evaluated for their potential use as therapeutics, either as single agents or in synergy with other drugs. Here, we discuss recent advances in the characterisation of novel UPS modulators (in particular, inhibitors of ubiquitin-conjugating and -deconjugating enzymes) and how they pave the way towards new therapeutic approaches for the treatment of proteotoxic disease, cancer and microbial infection.
Rapid evolution of promoters from germline-specifically expressed genes including transposon silencing factors
Background The piRNA pathway in animal gonads functions as an ‘RNA-based immune system’, serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila , this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23–28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. Results By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila , we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. Conclusion Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons.