Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
294
result(s) for
"Nicholson, Eric"
Sort by:
Comparative evaluation of antimicrobial activity of human granulysin, bovine and porcine NK-lysins against Shiga toxin-producing Escherichia coli O157:H7
by
Biernbaum, Erika N.
,
Kudva, Indira T.
,
Nicholson, Eric M.
in
Amino acids
,
Antibiotic resistance
,
Antibiotics
2023
Shiga toxin-producing Escherichia coli (STEC) O157:H7 (O157) is a foodborne pathogen causing human disease ranging from hemorrhagic colitis and hemolytic uremic syndrome to kidney failure, while remaining harmless to cattle, its primary reservoir. The severity of the human disease associated mainly with Shiga toxin production and a global emergence of antibiotic resistant STEC highlights the need for effective non-antibiotic, pre-harvest strategies to reduce O157 in cattle, the principal source of human infection. Towards this goal three synthetic antimicrobial peptides (AMPs): human granulysin (hGRNL), bovine NK-lysin (bNK2A), and porcine NK-lysin (pNKL), were tested in vitro against O157 isolates. As expected, circular dichroism spectroscopy findings were consistent with a predominantly α-helical conformation for all three AMPs in an environment mimicking bacterial outer surface or liposaccharides. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations of hGRNL (200 μM), bNK2A (12.5 μM against strain 86–24 and 25 μM against EDL933), and pNKL (6.25 μM) were determined using the Clinical and Laboratory Standards Institute broth microdilution method in Müeller-Hinton broth (cation-adjusted). The bNK2A and pNKL AMPs did not induce Shiga toxin expression in O157 at MIC, as there was a significant decrease or no change in toxin expression following 4- or 20 h incubation with the AMPs; bNK2A p <0.0001 (4 h) and p = 0.4831 (20 h); pNKL p <0.0001 (4 h) and p = 0.0001 (20 h). Propidium iodide uptake assay revealed faster O157 membrane damage or killing kinetics with bNK2A and pNKL compared to hGRNL. Nonetheless, transmission electron microscopy demonstrated that all three AMPs mediated damage to O157 membranes. In contrast, the three AMPs showed minimal cytotoxicity (<2%) against cattle red blood cells at tested concentrations (0.39–50 μM). Overall, our results demonstrate the potential for bNK2A and pNKL to be further developed into novel non-antibiotic agents to reduce O157 shedding in cattle.
Journal Article
Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis
by
Falkenberg, Shollie M.
,
Nicholson, Eric M.
,
Reinhardt, Timothy A.
in
Agriculture
,
Animal diseases
,
Animals
2018
Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobial activity against various bacterial pathogens, including several involved in bovine respiratory disease complex (BRDC) in cattle; however, such studies are yet to be performed with one important contributor to the BRDC, Mycoplasma bovis. Therefore, the goal of this study was to assess the antimicrobial activity of bovine NK-lysin-derived peptides on M. bovis. Thirty-mer synthetic peptides corresponding to the functional region helices 2 and 3 of bovine NK-lysins NK1, NK2A, NK2B, and NK2C were evaluated for killing activity on M. bovis isolates. Among four peptides, NK2A and NK2C showed the highest antimicrobial activity against the M. bovis isolates tested. All four NK-lysin peptides induced rapid plasma membrane depolarization in M. bovis at two concentrations tested. However, based on propidium iodide uptake, only NK2A and NK2C appeared capable of causing structural damage to M. bovis plasma membrane. Confocal microscopy, flow cytometry, and transmission electron microscopy further suggested NK-lysin-induced damage to the plasma membrane. Taken together, the findings in this study suggest that plasma membrane depolarization alone was insufficient to induce lethality, but disruption/permeabilization of the M. bovis plasma membrane was the cause of lethality.
Journal Article
Role of donor genotype in RT-QuIC seeding activity of chronic wasting disease prions using human and bank vole substrates
by
Hwang, Soyoun
,
Nicholson, Eric M.
,
Greenlee, Justin J.
in
Agricultural research
,
Amino acids
,
Animal diseases
2020
Chronic wasting disease is a transmissible spongiform encephalopathy of cervids. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein (PrPC) to pathogenic conformers (PrPSc), and the pathogenic forms accumulate in the brain and other tissues. Real-time Quaking Induced Conversion (RT-QuIC) can be used for the detection of prions and for prion strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how either PrPSc from cervids of different genotypes or PrPSc from different sources of CWD influence the fibril formation of recombinant bank vole (BV) or human prion proteins using RT-QuIC. We found that reaction mixtures seeded with PrPSc from different genotypes of white-tailed deer or reindeer brains have similar conversion efficiency with both substrates. Also, we observed similar results when assays were seeded with different sources of CWD. Thus, we conclude that the genotypes of all sources of CWD used in this study do not influence the level of conversion of PrPC to PrPSc.
Journal Article
Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy
2017
Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs.
Journal Article
Microglia-specific NF-κB signaling is a critical regulator of prion-induced glial inflammation and neuronal loss
2025
Prion diseases are a group of rare and fatal neurodegenerative diseases caused by the cellular prion protein, PrP C , misfolding into the infectious form, PrP Sc , which forms aggregates in the brain. This leads to activation of glial cells, neuroinflammation, and irreversible neuronal loss, however, the role of glial cells in prion disease pathogenesis and neurotoxicity is poorly understood. Microglia can phagocytose PrP Sc , leading to the release of inflammatory signaling molecules, which subsequently induce astrocyte reactivity. Animal models show highly upregulated inflammatory molecules that are a product of the Nuclear Factor-kappa B (NF-κB) signaling pathway, suggesting that this is a key regulator of inflammation in the prion-infected brain. The activation of the IκB kinase complex (IKK) by cellular stress signals is critical for NF-κB-induced transcription of a variety of genes, including pro-inflammatory cytokines and chemokines, and regulators of protein homeostasis and cell survival. However, the contribution of microglial IKK and NF-κB signaling in the prion-infected brain has not been evaluated. Here, we characterize a primary mixed glial cell model containing wild-type (WT) astrocytes and IKK knock-out (KO) microglia. These cultures show a near ablation of microglia compared to WT mixed glial cultures, highlighting the role of IKK in microglial survival and proliferation. We show that, when exposed to prion-infected brain homogenates, NF-κB-associated genes are significantly downregulated, but prion accumulation is significantly increased, in mixed glial cultures containing minimal microglia. Mice with IKK KO microglia show rapid disease progression when intracranially infected with prions, characterized by an increased density of activated microglia and reactive astrocytes, development of spongiosis, and accelerated loss of hippocampal neurons and associated behavioral deficits. These animals display clinical signs of prion disease early and have a 22% shorter life expectancy compared to infected wild-type mice. Intriguingly, PrP Sc accumulation was significantly lower in the brains of terminal animals with IKK KO microglia compared to terminal WT mice, suggesting that accelerated disease is independent of PrP Sc accumulation, highlighting a glial-specific pathology. Together, these findings present a critical role for microglial IKK and NF-κB signaling in host protection against prion disease.
Journal Article
Validation of a real-time quaking-induced conversion (RT-QuIC) assay protocol to detect chronic wasting disease using rectal mucosa of naturally infected, pre-clinical white-tailed deer (Odocoileus virginianus)
by
Nichols, Tracy A.
,
Walsh, Daniel P.
,
Seabury, Christopher M.
in
Animals
,
Assaying
,
Biology and Life Sciences
2024
Chronic wasting disease (CWD) is a fatal prion disease of cervids spreading across North America. More effective mitigation efforts may require expansion of the available toolkit to include new methods that provide earlier antemortem detection, higher throughput, and less expense than current immunohistochemistry (IHC) methods. The rectal mucosa near the rectoanal junction is a site of early accumulation of CWD prions and is safely sampled in living animals by pinch biopsy. A fluorescence-based, 96-well format, protein-aggregation assay—the real-time quaking-induced conversion (RT-QuIC) assay—is capable of ultra-sensitive detection of CWD prions. Notably, the recombinant protein substrate is crucial to the assay’s performance and is now commercially available. In this blinded independent study, the preclinical diagnostic performance of a standardized RT-QuIC protocol using a commercially sourced substrate (MNPROtein) and a laboratory-produced substrate was studied using mock biopsy samples of the rectal mucosa from 284 white-tailed deer ( Odocoileus virginianus) . The samples were from a frozen archive of intact rectoanal junctions collected at depopulations of farmed herds positive for CWD in the United States. All deer were pre-clinical at the time of depopulation and infection status was established from the regulatory record, which evaluated the medial retropharyngeal lymph nodes (MRPLNs) and obex by CWD-IHC. A pre-analytic sample precipitation step was found to enhance the protocol’s detection limit. Performance metrics were influenced by the choice of RT-QuIC diagnostic cut points (minimum number of positive wells and assay time) and by deer attributes (preclinical infection stage and prion protein genotype). The peak overall diagnostic sensitivities of the protocol were similar for both substrates (MNPROtein, 76.8%; laboratory-produced, 73.2%), though each was achieved at different cut points. Preclinical infection stage and prion protein genotype at codon 96 (G = glycine, S = serine) were primary predictors of sensitivity. The diagnostic sensitivities in late preclinical infections (CWD-IHC positive MPRLNs and obex) were similar, ranging from 96% in GG96 deer to 80% in xS96 deer (x = G or S). In early preclinical infections (CWD-IHC positive MRPLNs only), the diagnostic sensitivity was 64–71% in GG96 deer but only 25% in xS96 deer. These results demonstrate that this standardized RT-QuIC protocol for rectal biopsy samples using a commercial source of substrate produced stratified diagnostic sensitivities similar to or greater than those reported for CWD-IHC but in less than 30 hours of assay time and in a 96-well format. Notably, the RT-QuIC protocol used herein represents a standardization of protocols from several previous studies. Alignment of the sensitivities across these studies suggests the diagnostic performance of the assay is robust given quality reagents, optimized diagnostic criteria, and experienced staff.
Journal Article
Temporal serum neurofilament light chain concentrations in sheep inoculated with the agent of classical scrapie
by
Greenlee, Justin
,
Brown, Quazetta
,
Veneziano, Susan
in
Analysis
,
BASIC BIOLOGICAL SCIENCES
,
Biological markers
2024
Neurofilament light chain (Nf-L) has been used to detect neuroaxonal damage in the brain caused by physical injury or disease. The purpose of this study was to determine if serum Nf-L could be used as a biomarker for pre-symptomatic detection of scrapie in sheep.
Four sheep with prion protein genotype AVQQ were intranasally inoculated with the classical scrapie strain x124. Blood was collected every 4 weeks until 44 weeks post-inoculation, at which point weekly collection commenced. Serum was analyzed using single molecule array (Quanterix SR-X) to evaluate Nf-L concentrations.
Scrapie was confirmed in each sheep by testing homogenized brainstem at the level of the obex with a commercially available enzyme immunoassay. Increased serum Nf-L concentrations were identified above the determined cutoff during the last tenth of the respective incubation period for each sheep. Throughout the time course study, PrPSc accumulation was not detected antemortem by immunohistochemistry in rectal tissue at any timepoint for any sheep. RT-QuIC results were inconsistently positive throughout the timepoints tested for each sheep; however, each sheep had at least one timepoint detected positive. When assessing serum Nf-L utility using receiver operator characteristic curves against different clinical parameters, such as asymptomatic and symptomatic (pruritus or neurologic signs), results showed that Nf-L was most useful at being an indicator of disease only late in disease progression when neurologic signs were present.
Serum Nf-L concentrations in the cohort of sheep increased as disease progressed; however, serum Nf-L did not increase during the presymptomatic window. The levels increased substantially throughout the final 10% of the animals' scrapie incubation period when other clinical signs were present. Serum Nf-L is not a reliable biomarker for pre-clinical detection of scrapie.
Journal Article
Aqueous extraction of formalin-fixed paraffin-embedded tissue and detection of prion disease using real-time quaking-induced conversion
by
Nicholson, Eric M.
,
Hwang, Soyoun
,
Greenlee, Justin J.
in
Advancing Methods in Molecular Biology and Genetics
,
Animal diseases
,
Animals
2024
Objective
The goal of the research presented here is to determine if methods previously developed for the aqueous extraction of PrP
Sc
from formalin-fixed paraffin-embedded tissue (FFPET) are applicable to the detection PrP
Sc
by real-time quaking induced conversion (RT-QuIC). Previous work has utilized aqueous extraction of FFPET for detection of transmissible spongiform encephalopathies (TSEs) utilizing western blot and ELISA. This research extends the range of suitable methods for detection of TSEs in FFPET to RT-QuIC, which is arguably the most sensitive method to detect TSEs.
Results
We found complete agreement between the TSE status and the results from RT-QuIC seeded with the aqueous extract of FFPET samples. The method affords the diagnostic assessment TSE status by RT-QuIC of FFPET without the use of organic solvents that would otherwise create a mixed chemical-biological waste for disposal.
Journal Article
Synthetic bovine NK-lysin-derived peptide (bNK2A) does not require intra-chain disulfide bonds for bactericidal activity
by
Nicholson, Eric M.
,
Dassanayake, Rohana P.
,
Falkenberg, Shollie M.
in
Agricultural research
,
Animal diseases
,
Animals
2019
Bovine NK-lysins are cationic antimicrobial proteins found predominantly in the cytosolic granules of T lymphocytes and NK-cells. NK-lysin-derived peptides show antimicrobial activity against both Gram positive and Gram negative bacteria. Mature NK-lysin protein has six well-conserved cysteine residues. This study was performed to assess whether synthetic bovine NK-lysin-derived peptide (bNK2A) forms disulfide bonds and whether disulfide bonds were essential for bNK2A antimicrobial activity. Two 30-mer bNK2A peptides were synthesized: one with two original cysteines and an analog with cysteines substituted with two serines. Mass spectrometry revealed lack of disulfide bonds in original peptide while CD spectrophotometry showed both peptides have similar α-helical structures. Since both peptides were equally inhibitory to Histophilus somni, disulfide bonds appeared dispensable for synthetic bNK2A peptide antibacterial activity.
Journal Article
Bovine NK-lysin peptides exert potent antimicrobial activity against multidrug-resistant Salmonella outbreak isolates
2021
Multidrug-resistant (MDR)
Salmonella
is a threat to public health. Non-antibiotic therapies could serve as important countermeasures to control MDR
Salmonella
outbreaks. In this study, antimicrobial activity of cationic α-helical bovine NK-lysin-derived antimicrobial peptides was evaluated against MDR
Salmonella
outbreak isolates. NK2A and NK2B strongly inhibited MDR
Salmonella
growth while NK1 and NK2C showed minimum-to-no growth inhibition. Scrambled-NK2A, which is devoid of α-helicity but has the same net positive charge as NK2A, also failed to inhibit bacterial growth. Incubation of negatively charged MDR
Salmonella
with NK2A showed increased Zeta potential, indicating bacterial-peptide electrostatic attraction. Confocal and transmission electron microscopy studies revealed NK2A-mediated damage to MDR
Salmonella
membranes. LPS inhibited NK2A-mediated growth suppression in a dose-dependent response, suggesting irreversible NK2A-LPS binding. LPS-NK2A binding and bacterial membrane disruption was also confirmed via electron microscopy using gold nanoparticle-NK2A conjugates. Finally, NK2A-loaded polyanhydride nanoparticles showed sustained peptide delivery and anti-bacterial activity. Together, these findings indicate that NK2A α-helicity and positive charge are prerequisites for antimicrobial activity and that MDR
Salmonella
killing is mediated by direct interaction of NK2A with LPS and the inner membrane, leading to bacterial membrane permeabilization. With further optimization using nano-carriers, NK2A has the potential to become a potent anti-MDR
Salmonella
agent.
Journal Article