Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
600
result(s) for
"Nielsen, Frank"
Sort by:
An Elementary Introduction to Information Geometry
In this survey, we describe the fundamental differential-geometric structures of information manifolds, state the fundamental theorem of information geometry, and illustrate some use cases of these information manifolds in information sciences. The exposition is self-contained by concisely introducing the necessary concepts of differential geometry. Proofs are omitted for brevity.
Journal Article
On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means
2019
The Jensen–Shannon divergence is a renowned bounded symmetrization of the unbounded Kullback–Leibler divergence which measures the total Kullback–Leibler divergence to the average mixture distribution. However, the Jensen–Shannon divergence between Gaussian distributions is not available in closed form. To bypass this problem, we present a generalization of the Jensen–Shannon (JS) divergence using abstract means which yields closed-form expressions when the mean is chosen according to the parametric family of distributions. More generally, we define the JS-symmetrizations of any distance using parameter mixtures derived from abstract means. In particular, we first show that the geometric mean is well-suited for exponential families, and report two closed-form formula for (i) the geometric Jensen–Shannon divergence between probability densities of the same exponential family; and (ii) the geometric JS-symmetrization of the reverse Kullback–Leibler divergence between probability densities of the same exponential family. As a second illustrating example, we show that the harmonic mean is well-suited for the scale Cauchy distributions, and report a closed-form formula for the harmonic Jensen–Shannon divergence between scale Cauchy distributions. Applications to clustering with respect to these novel Jensen–Shannon divergences are touched upon.
Journal Article
On a Generalization of the Jensen–Shannon Divergence and the Jensen–Shannon Centroid
by
Nielsen, Frank
in
bregman divergence
,
capacitory discrimination
,
difference of convex (dc) programming
2020
The Jensen–Shannon divergence is a renown bounded symmetrization of the Kullback–Leibler divergence which does not require probability densities to have matching supports. In this paper, we introduce a vector-skew generalization of the scalar α -Jensen–Bregman divergences and derive thereof the vector-skew α -Jensen–Shannon divergences. We prove that the vector-skew α -Jensen–Shannon divergences are f-divergences and study the properties of these novel divergences. Finally, we report an iterative algorithm to numerically compute the Jensen–Shannon-type centroids for a set of probability densities belonging to a mixture family: This includes the case of the Jensen–Shannon centroid of a set of categorical distributions or normalized histograms.
Journal Article
A Simple Approximation Method for the Fisher–Rao Distance between Multivariate Normal Distributions
2023
We present a simple method to approximate the Fisher–Rao distance between multivariate normal distributions based on discretizing curves joining normal distributions and approximating the Fisher–Rao distances between successive nearby normal distributions on the curves by the square roots of their Jeffreys divergences. We consider experimentally the linear interpolation curves in the ordinary, natural, and expectation parameterizations of the normal distributions, and compare these curves with a curve derived from the Calvo and Oller’s isometric embedding of the Fisher–Rao d-variate normal manifold into the cone of (d+1)×(d+1) symmetric positive–definite matrices. We report on our experiments and assess the quality of our approximation technique by comparing the numerical approximations with both lower and upper bounds. Finally, we present several information–geometric properties of Calvo and Oller’s isometric embedding.
Journal Article
Revisiting Chernoff Information with Likelihood Ratio Exponential Families
2022
The Chernoff information between two probability measures is a statistical divergence measuring their deviation defined as their maximally skewed Bhattacharyya distance. Although the Chernoff information was originally introduced for bounding the Bayes error in statistical hypothesis testing, the divergence found many other applications due to its empirical robustness property found in applications ranging from information fusion to quantum information. From the viewpoint of information theory, the Chernoff information can also be interpreted as a minmax symmetrization of the Kullback–Leibler divergence. In this paper, we first revisit the Chernoff information between two densities of a measurable Lebesgue space by considering the exponential families induced by their geometric mixtures: The so-called likelihood ratio exponential families. Second, we show how to (i) solve exactly the Chernoff information between any two univariate Gaussian distributions or get a closed-form formula using symbolic computing, (ii) report a closed-form formula of the Chernoff information of centered Gaussians with scaled covariance matrices and (iii) use a fast numerical scheme to approximate the Chernoff information between any two multivariate Gaussian distributions.
Journal Article
Two Types of Geometric Jensen–Shannon Divergences
The geometric Jensen–Shannon divergence (G-JSD) has gained popularity in machine learning and information sciences thanks to its closed-form expression between Gaussian distributions. In this work, we introduce an alternative definition of the geometric Jensen–Shannon divergence tailored to positive densities which does not normalize geometric mixtures. This novel divergence is termed the extended G-JSD, as it applies to the more general case of positive measures. We explicitly report the gap between the extended G-JSD and the G-JSD when considering probability densities, and show how to express the G-JSD and extended G-JSD using the Jeffreys divergence and the Bhattacharyya distance or Bhattacharyya coefficient. The extended G-JSD is proven to be an f-divergence, which is a separable divergence satisfying information monotonicity and invariance in information geometry. We derive a corresponding closed-form formula for the two types of G-JSDs when considering the case of multivariate Gaussian distributions that is often met in applications. We consider Monte Carlo stochastic estimations and approximations of the two types of G-JSD using the projective γ-divergences. Although the square root of the JSD yields a metric distance, we show that this is no longer the case for the two types of G-JSD. Finally, we explain how these two types of geometric JSDs can be interpreted as regularizations of the ordinary JSD.
Journal Article
Symplectic Bregman Divergences
2024
We present a generalization of Bregman divergences in finite-dimensional symplectic vector spaces that we term symplectic Bregman divergences. Symplectic Bregman divergences are derived from a symplectic generalization of the Fenchel–Young inequality which relies on the notion of symplectic subdifferentials. The symplectic Fenchel–Young inequality is obtained using the symplectic Fenchel transform which is defined with respect to the symplectic form. Since symplectic forms can be built generically from pairings of dual systems, we obtain a generalization of Bregman divergences in dual systems obtained by equivalent symplectic Bregman divergences. In particular, when the symplectic form is derived from an inner product, we show that the corresponding symplectic Bregman divergences amount to ordinary Bregman divergences with respect to composite inner products. Some potential applications of symplectic divergences in geometric mechanics, information geometry, and learning dynamics in machine learning are touched upon.
Journal Article
Divergences Induced by the Cumulant and Partition Functions of Exponential Families and Their Deformations Induced by Comparative Convexity
2024
Exponential families are statistical models which are the workhorses in statistics, information theory, and machine learning, among others. An exponential family can either be normalized subtractively by its cumulant or free energy function, or equivalently normalized divisively by its partition function. Both the cumulant and partition functions are strictly convex and smooth functions inducing corresponding pairs of Bregman and Jensen divergences. It is well known that skewed Bhattacharyya distances between the probability densities of an exponential family amount to skewed Jensen divergences induced by the cumulant function between their corresponding natural parameters, and that in limit cases the sided Kullback–Leibler divergences amount to reverse-sided Bregman divergences. In this work, we first show that the α-divergences between non-normalized densities of an exponential family amount to scaled α-skewed Jensen divergences induced by the partition function. We then show how comparative convexity with respect to a pair of quasi-arithmetical means allows both convex functions and their arguments to be deformed, thereby defining dually flat spaces with corresponding divergences when ordinary convexity is preserved.
Journal Article
On a Variational Definition for the Jensen-Shannon Symmetrization of Distances Based on the Information Radius
2021
We generalize the Jensen-Shannon divergence and the Jensen-Shannon diversity index by considering a variational definition with respect to a generic mean, thereby extending the notion of Sibson’s information radius. The variational definition applies to any arbitrary distance and yields a new way to define a Jensen-Shannon symmetrization of distances. When the variational optimization is further constrained to belong to prescribed families of probability measures, we get relative Jensen-Shannon divergences and their equivalent Jensen-Shannon symmetrizations of distances that generalize the concept of information projections. Finally, we touch upon applications of these variational Jensen-Shannon divergences and diversity indices to clustering and quantization tasks of probability measures, including statistical mixtures.
Journal Article
Fast Proxy Centers for the Jeffreys Centroid: The Jeffreys–Fisher–Rao Center and the Gauss–Bregman Inductive Center
2024
The symmetric Kullback–Leibler centroid, also called the Jeffreys centroid, of a set of mutually absolutely continuous probability distributions on a measure space provides a notion of centrality which has proven useful in many tasks, including information retrieval, information fusion, and clustering. However, the Jeffreys centroid is not available in closed form for sets of categorical or multivariate normal distributions, two widely used statistical models, and thus needs to be approximated numerically in practice. In this paper, we first propose the new Jeffreys–Fisher–Rao center defined as the Fisher–Rao midpoint of the sided Kullback–Leibler centroids as a plug-in replacement of the Jeffreys centroid. This Jeffreys–Fisher–Rao center admits a generic formula for uni-parameter exponential family distributions and a closed-form formula for categorical and multivariate normal distributions; it matches exactly the Jeffreys centroid for same-mean normal distributions and is experimentally observed in practice to be close to the Jeffreys centroid. Second, we define a new type of inductive center generalizing the principle of the Gauss arithmetic–geometric double sequence mean for pairs of densities of any given exponential family. This new Gauss–Bregman center is shown experimentally to approximate very well the Jeffreys centroid and is suggested to be used as a replacement for the Jeffreys centroid when the Jeffreys–Fisher–Rao center is not available in closed form. Furthermore, this inductive center always converges and matches the Jeffreys centroid for sets of same-mean normal distributions. We report on our experiments, which first demonstrate how well the closed-form formula of the Jeffreys–Fisher–Rao center for categorical distributions approximates the costly numerical Jeffreys centroid, which relies on the Lambert W function, and second show the fast convergence of the Gauss–Bregman double sequences, which can approximate closely the Jeffreys centroid when truncated to a first few iterations. Finally, we conclude this work by reinterpreting these fast proxy Jeffreys–Fisher–Rao and Gauss–Bregman centers of Jeffreys centroids under the lens of dually flat spaces in information geometry.
Journal Article