Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
82 result(s) for "Nifantiev, Nikolay E."
Sort by:
Fucoidans of Brown Algae: Comparison of Sulfated Polysaccharides from Fucus vesiculosus and Ascophyllum nodosum
Preparations of sulfated polysaccharides obtained from brown algae are known as fucoidans. These biopolymers have attracted considerable attention due to many biological activities which may find practical applications. Two Atlantic representatives of Phaeophyceae, namely, Fucus vesiculosus and Ascophyllum nodosum, belonging to the same order Fucales, are popular sources of commercial fucoidans, which often regarded as very similar in chemical composition and biological actions. Nevertheless, these two fucoidan preparations are polysaccharide mixtures which differ considerably in amount and chemical nature of components, and hence, this circumstance should be taken into account in the investigation of their biological properties and structure–activity relationships. In spite of these differences, fractions with carefully characterized structures prepared from both fucoidans may have valuable applications in drug development.
Fluorescence Polarization Assay for Infection Diagnostics: A Review
Rapid and specific diagnosis is necessary for both the treatment and prevention of infectious diseases. Bacteria and viruses that enter the bloodstream can trigger a strong immune response in infected animals and humans. The fluorescence polarization assay (FPA) is a rapid and accurate method for detecting specific antibodies in the blood that are produced in response to infection. One of the first examples of FPA is the non-competitive test for detecting brucellosis in animals, which was followed by the development of other protocols for detecting various infections. Fluorescently labeled polysaccharides (in the case of brucellosis and salmonellosis) or specific peptides (in the case of tuberculosis and salmonellosis, etc.) can be used as biorecognition elements for detecting infections. The availability of new laboratory equipment and mobile devices for fluorescence polarization measurements outside the laboratory has stimulated the development of new fluorescence polarization assays (FPAs) and the emergence of commercial kits on the market for the detection of brucellosis, tuberculosis, and equine infectious anemia viruses. It has been shown that, in addition to antibodies, the FPA method can detect both viruses and nucleic acids. The development of more specific and sensitive biomarkers is essential for the diagnosis of infections and therapy monitoring. This review summarizes studies published between 2003 and 2023 that focus on the detection of infections using FPA. Furthermore, it demonstrates the potential for using new biorecognition elements (e.g., aptamers, proteins, peptides) and the combined use of FPA with new technologies, such as PCR and CRISPR/Cas12a systems, for detecting various infectious agents.
Synthesis of Pseudooligosaccharides Related to the Capsular Phosphoglycan of Haemophilus influenzae Type a
Synthesis of spacer-armed pseudodi-, pseudotetra-, and pseudohexasaccharides related to the capsular phosphoglycan of Haemophilus influenzae type a, the second most virulent serotype of H. influenzae (after type b), was performed for the first time via iterative chain elongation using H-phosphonate chemistry for the formation of inter-unit phosphodiester bridges. These compounds were prepared for the design of neoglycoconjugates, as exemplified by the transformation of the obtained pseudohexasaccharide derivative into a biotinylated glycoconjugate suitable for use in immunological studies, particularly in diagnostic screening systems as a coating antigen for streptavidin-coated plates and chip slides.
Synthesis and Immunogenicity of Pseudo-Oligosaccharides Structurally Related to Repeating Units of Capsular Phosphoglycans of Human Pathogens
This review focuses on the synthesis of spacer-armed phosphooligosaccharides structurally related to the capsular phosphoglycans of pathogenic bacteria, including the Haemophilus influenzae serotypes a, b, c, and f, Neisseria meningitidis serogroups a and x, the Streptococcus pneumoniae serotypes 6a, 6b, 6c, 6f, 19a, and 19f, and the Campylobacter jejuni serotype HS:53, strain RM1221, in which the phosphodiester linkage is a structural component of a phosphoglycan backbone. Also, in this review, we summarize the current knowledge on the preparation and immunogenicity of neoglycoconjugates based on synthetic phosphooligosaccharides. The discussed data helps evaluate the prospects for the development of conjugate vaccines on the basis of synthetic phosphooligosaccharide antigens.
Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen
β-(1→3)-D-Glucan is an essential component of the fungal cell wall. Mouse monoclonal antibodies (mAbs) against synthetic nona-β-(1→3)-D-glucoside conjugated with bovine serum albumin (BSA) were generated using hybridoma technology. The affinity constants of two selected mAbs, 3G11 and 5H5, measured by a surface plasmon resonance biosensor assay using biotinylated nona-β-(1→3)-D-glucan as the ligand, were approximately 11 nM and 1.9 nM, respectively. The glycoarray, which included a series of synthetic oligosaccharide derivatives representing β-glucans with different lengths of oligo-β-(1→3)-D-glucoside chains, demonstrated that linear tri-, penta- and nonaglucoside, as well as a β-(1→6)-branched octasaccharide, were recognized by mAb 5H5. By contrast, only linear oligo-β-(1→3)-D-glucoside chains that were not shorter than pentaglucosides (but not the branched octaglucoside) were ligands for mAb 3G11. Immunolabelling indicated that 3G11 and 5H5 interact with both yeasts and filamentous fungi, including species from Aspergillus, Candida, Penicillium genera and Saccharomyces cerevisiae, but not bacteria. Both mAbs could inhibit the germination of Aspergillus fumigatus conidia during the initial hours and demonstrated synergy with the antifungal fluconazole in killing C. albicans in vitro. In addition, mAbs 3G11 and 5H5 demonstrated protective activity in in vivo experiments, suggesting that these β-glucan-specific mAbs could be useful in combinatorial antifungal therapy.
Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina chilensis and Holothuria hilla: Structures and Anticoagulant Activity
Fucosylated chondroitin sulfates (FCSs) PC and HH were isolated from the sea cucumbers Paracaudina chilensis and Holothuria hilla, respectively. The purification of the polysaccharides was carried out by anion-exchange chromatography on a DEAE-Sephacel column. The structural characterization of the polysaccharides was performed in terms of monosaccharide and sulfate content, as well as using a series of nondestructive NMR spectroscopic methods. Both polysaccharides were shown to contain a chondroitin core [→3)-β-d-GalNAc (N-acethyl galactosamine)-(1→4)-β-d-GlcA (glucuronic acid)-(1→]n, bearing sulfated fucosyl branches at O-3 of every GlcA residue in the chain. These fucosyl residues were different in their pattern of sulfation: PC contained Fuc2S4S and Fuc4S in a ratio of 2:1, whereas HH included Fuc2S4S, Fuc3S4S, and Fuc4S in a ratio of 1.5:1:1. Moreover, some GalNAc residues in HH were found to contain an unusual disaccharide branch Fuc4S-(1→2)-Fuc3S4S-(1→ at O-6. Sulfated GalNAc4S6S and GalNAc4S units were found in a ratio of 3:2 in PC and 2:1 in HH. Both polysaccharides demonstrated significant anticoagulant activity in a clotting time assay, which is connected with the ability of these FCSs to potentiate the inhibition of thrombin and factor Xa in the presence of anti-thrombin III (ATIII) and with the direct inhibition of thrombin in the absence of any cofactors.
The Synthesis of Blood Group Antigenic A Trisaccharide and Its Biotinylated Derivative
Blood group antigenic A trisaccharide represents the terminal residue of all A blood group antigens and plays a key role in blood cell recognition and blood group compatibility. Herein, we describe the synthesis of the spacered A trisaccharide by means of an assembly scheme that employs in its most complex step the recently proposed glycosyl donor of the 2-azido-2-deoxy-selenogalactoside type, bearing stereocontrolling 3-O-benzoyl and 4,6-O-(di-tert-butylsilylene)-protecting groups. Its application provided efficient and stereoselective formation of the required α-glycosylation product, which was then deprotected and subjected to spacer biotinylation to give both target products, which are in demand for biochemical studies.
Novel mouse monoclonal antibodies specifically recognize Aspergillus fumigatus galactomannan
A panel of specific monoclonal antibodies (mAbs) against synthetic pentasaccharide β-D-Galf-(1→5)-[β-D-Galf-(1→5)]3-α-D-Manp, structurally related to Aspergillus fumigatus galactomannan, was generated using mice immunized with synthetic pentasaccharide-BSA conjugate and by hybridoma technology. Two selected mAbs, 7B8 and 8G4, could bind with the initial pentasaccharide with affinity constants of approximately 5.3 nM and 6.4 nM, respectively, based on surface plasmon resonance-based biosensor assay. The glycoarray, built from a series of synthetic oligosaccharide derivatives representing different galactomannan fragments, demonstrated that mAb 8G4 could effectively recognize the parental pentasaccharide while mAb 7B8 recognizes its constituting trisaccharide parts. Immunofluorescence studies showed that both 7B8 and 8G4 could stain A. fumigatus cells in culture efficiently, but not the mutant strain lacking galactomannan. In addition, confocal microscopy demonstrated that Candida albicans, Bifidobacterium longum, Lactobacillus plantarum, and numerous gram-positive and gram-negative bacteria were not labeled by mAbs 7B8 and 8G4. The generated mAbs can be considered promising for the development of a new specific enzyme-linked assay for detection of A. fumigatus, which is highly demanded for medical and environmental controls.
Gas-Phase Fragmentation of Cyclic Oligosaccharides in Tandem Mass Spectrometry
Modern mass spectrometry, including electrospray and MALDI, is applied for analysis and structure elucidation of carbohydrates. Cyclic oligosaccharides isolated from different sources (bacteria and plants) have been known for decades and some of them (cyclodextrins and their derivatives) are widely used in drug design, as food additives, in the construction of nanomaterials, etc. The peculiarities of the first- and second-order mass spectra of cyclic oligosaccharides (natural, synthetic and their derivatives and modifications: cyclodextrins, cycloglucans, cyclofructans, cyclooligoglucosamines, etc.) are discussed in this minireview.
Stereocontrolled Synthesis and Conformational Analysis of a Series of Disaccharides α,β-d-GlcA-(1→3)-α-L-Fuc
D-Glucuronic acid is a fundamental building block of many biologically important polysaccharides, either in its non-substituted form or bearing a variety of substituents, among them sulfates. We have previously performed a study of the effects of exhaustive sulfation on the conformational behavior of β-gluronopyranosides. Herein, we report an investigation comparing α- and β-derivatives of this monosaccharide within the title disaccharides using NMR and quantum chemistry approaches. It was found that for α-linked disaccharides, the introduction of sulfates did not greatly affect their conformational behavior. However, for β-derivatives, considerable conformational changes were observed. In general, they resemble those that took place for the monosaccharides, except that NOESY experiments and calculations of intra-ring spin–spin coupling constants suggest the presence of a 1S5 conformer along with 3S1 in the fully sulfated disaccharide. During the synthesis of model compounds, hydrogen bond-mediated aglycone delivery was used as an α-directing stereocontrol approach in the glucuronidation reaction.