Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
126
result(s) for
"Nigg, Erich A."
Sort by:
Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole
2014
Primary cilia play critical roles in development and disease. Their assembly is triggered by mature centrioles (basal bodies) and requires centrosomal protein 164kDa (Cep164), a component of distal appendages. Here we show that loss of Cep164 leads to early defects in ciliogenesis, reminiscent of the phenotypic consequences of mutations in TTBK2 (Tau tubulin kinase 2). We identify Cep164 as a likely physiological substrate of TTBK2 and demonstrate that Cep164 and TTBK2 form a complex. We map the interaction domains and demonstrate that complex formation is crucial for the recruitment of TTBK2 to basal bodies. Remarkably, ciliogenesis can be restored in Cep164-depleted cells by expression of chimeric proteins in which TTBK2 is fused to the C-terminal centriole-targeting domain of Cep164. These findings indicate that one of the major functions of Cep164 in ciliogenesis is to recruit active TTBK2 to centrioles. Once positioned, TTBK2 then triggers key events required for ciliogenesis, including removal of CP110 and recruitment of intraflagellar transport proteins. In addition, our data suggest that TTBK2 also acts upstream of Cep164, contributing to the assembly of distal appendages.
Journal Article
Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81
2013
Intraflagellar transport (IFT) of ciliary precursors such as tubulin from the cytoplasm to the ciliary tip is involved in the construction of the cilium, a hairlike organelle found on most eukaryotic cells. However, the molecular mechanisms of IFT are poorly understood. Here, we found that the two core IFT proteins IFT74 and IFT81 form a tubulin-binding module and mapped the interaction to a calponin homology domain of IFT81 and a highly basic domain in IFT74. Knockdown of IFT81 and rescue experiments with point mutants showed that tubulin binding by IFT81 was required for ciliogenesis in human cells.
Journal Article
Mitotic kinases as regulators of cell division and its checkpoints
Mitosis and cytokinesis are undoubtedly the most spectacular parts of the cell cycle. Errors in the choreography of these processes can lead to aneuploidy or genetic instability, fostering cell death or disease. Here, I give an overview of the many mitotic kinases that regulate cell division and the fidelity of chromosome transmission.
Journal Article
3D-structured illumination microscopy provides novel insight into architecture of human centrosomes
2012
Centrioles are essential for the formation of cilia and flagella. They also form the core of the centrosome, which organizes microtubule arrays important for cell shape, polarity, motility and division. Here, we have used super-resolution 3D-structured illumination microscopy to analyse the spatial relationship of 18 centriole and pericentriolar matrix (PCM) components of human centrosomes at different cell cycle stages. During mitosis, PCM proteins formed extended networks with interspersed γ-Tubulin. During interphase, most proteins were arranged at specific distances from the walls of centrioles, resulting in ring staining, often with discernible density masses. Through use of site-specific antibodies, we found the C-terminus of Cep152 to be closer to centrioles than the N-terminus, illustrating the power of 3D-SIM to study protein disposition. Appendage proteins showed rings with multiple density masses, and the number of these masses was strongly reduced during mitosis. At the proximal end of centrioles, Sas-6 formed a dot at the site of daughter centriole assembly, consistent with its role in cartwheel formation. Plk4 and STIL co-localized with Sas-6, but Cep135 was associated mostly with mother centrioles. Remarkably, Plk4 formed a dot on the surface of the mother centriole before Sas-6 staining became detectable, indicating that Plk4 constitutes an early marker for the site of nascent centriole formation. Our study provides novel insights into the architecture of human centrosomes and illustrates the power of super-resolution microscopy in revealing the relative localization of centriole and PCM proteins in unprecedented detail.
Journal Article
Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods
by
Vanselow, Katja
,
Hyman, Anthony A
,
Lundberg, Emma
in
Biochemistry
,
Biokemi
,
Centrioles - chemistry
2011
Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP‐SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non‐specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.
Organellar proteomics revealed a surprising complexity of centrosome composition. New combinatorial approaches now further extend the list of centrosome proteins, but also begin to elucidate their dynamics and differential localization.
Journal Article
The Polo kinase Plk4 functions in centriole duplication
by
Stierhof, York-Dieter
,
Wilkinson, Christopher J.
,
Nigg, Erich A.
in
Antibodies
,
Biology
,
Biomedical and Life Sciences
2005
The human Polo-like kinase 1 (PLK1) and its functional homologues that are present in other eukaryotes have multiple, crucial roles in meiotic and mitotic cell division
1
,
2
. By contrast, the functions of other mammalian Polo family members remain largely unknown. Plk4 is the most structurally divergent Polo family member; it is maximally expressed in actively dividing tissues and is essential for mouse embryonic development
3
. Here, we identify Plk4 as a key regulator of centriole duplication. Both gain- and loss-of-function experiments demonstrate that Plk4 is required — in cooperation with Cdk2, CP110 and Hs-SAS6 — for the precise reproduction of centrosomes during the cell cycle. These findings provide an attractive explanation for the crucial function of Plk4 in cell proliferation and have implications for the role of Polo kinases in tumorigenesis.
Journal Article
Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3
by
Gaitanos, Thomas N
,
Santamaria, Anna
,
Nigg, Erich A
in
Cell division
,
Cell Physiological Phenomena
,
Chromosomal Proteins, Non-Histone - metabolism
2009
Ska1 and Ska2 form a complex at the kinetochore–microtubule (KT–MT) interface and are required for timely progression from metaphase to anaphase. Here, we use mass spectrometry to search for additional components of the Ska complex. We identify C13Orf3 (now termed Ska3) as a novel member of this complex and map the interaction domains among the three known components. Ska3 displays similar characteristics as Ska1 and Ska2: it localizes to the spindle and KT throughout mitosis and its depletion markedly delays anaphase transition. Interestingly, a more complete removal of the Ska complex by concomitant depletion of Ska1 and Ska3 results in a chromosome congression failure followed by cell death. This severe phenotype reflects a destabilization of KT–MT interactions, as demonstrated by reduced cold stability of KT fibres. Yet, the depletion of the Ska complex only marginally impairs KT localization of the KMN network responsible for MT attachment. We propose that the Ska complex functionally complements the KMN, providing an additional layer of stability to KT–MT attachment and possibly signalling completion of attachment to the spindle checkpoint.
Journal Article
Quantitative Mass Spectrometry Analysis Reveals Similar Substrate Consensus Motif for Human Mps1 Kinase and Plk1
by
Nigg, Erich A.
,
von Schubert, Conrad
,
Santamaria, Anna
in
Analysis
,
Aurora B protein
,
Biochemistry
2011
Members of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1 (hMps1) is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the upstream kinases responsible for these phosphorylations are not presently known.
Here, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation. Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these two mitotic kinases share a similar substrate consensus.
hMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1 autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase.
Journal Article
Once and only once: mechanisms of centriole duplication and their deregulation in disease
2018
Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.
Journal Article
STIL binding to Polo-box 3 of PLK4 regulates centriole duplication
by
Arquint, Christian
,
Gabryjonczyk, Anna-Maria
,
Hiller, Sebastian
in
Biophysics and Structural Biology
,
Cell Biology
,
cell cycle
2015
Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box–peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication. Centrioles are structures that organize the molecular scaffolding inside cells, which is important for a cell's shape and activity, as well as the segregation of duplicated chromosomes during cell division. Centrioles also form part of the base of the antenna-like structures called cilia, which project out from the cell's surface and allow cells to sense chemicals and touch or even to move. A cell that is not dividing contains a pair of centrioles. In dividing cells, the two centrioles duplicate once per cycle of division and a new centriole forms next to each of the existing ones. It is essential that centrioles duplicate only once, because extra copies can lead to problems that may cause birth defects and cancer. Centrioles require two proteins, called PLK4 and STIL, in order to duplicate. An excess of either of these proteins results in extra centrioles. On the other hand, if these are missing, duplication cannot take place. PLK4 belongs to a large family of enzymes called kinases. A kinase attaches a phosphate group to other proteins, which can either activate or deactivate the other protein. PLK4 can add phosphate groups onto STIL, but it is not known precisely how these two proteins interact with each other. Arquint, Gabryjonczyk, Imseng, Böhm et al. have analyzed this interaction in human cells and found that PLK4 and STIL bind directly to one another. Part of the STIL protein adopts a so-called ‘coiled-coil’ structure in which twisted lengths of protein wrap around each other like a piece of string. The coiled-coil interacts with two different parts of PLK4. Following on from these observations, the three-dimensional structure of PLK-4 bound to STIL was visualized using X-ray crystallography and nuclear magnetic resonance. These techniques revealed that the coiled-coil region of STIL forms an elongated structure and PLK-4 interacts along its entire length. Arquint, Gabryjonczyk, Imseng, Böhm et al. then analyzed whether PLK4 and STIL need one another in order to get recruited to centrioles. When PLK4 was depleted in cells, STIL was lost from centrioles, suggesting that PLK4 directly recruits STIL. However, contrary to expectations, when STIL levels were reduced, PLK4 accumulated at centrioles. This suggests that STIL maintains appropriate levels of PLK4 via stimulation of its kinase activity. Further work is needed to precisely understand how PLK4 and STIL interact with other proteins that act downstream to lead to the formation of new centrioles in a highly controlled manner.
Journal Article