Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
33 result(s) for "Nikolova, Maria P."
Sort by:
Metal Oxide Nanoparticles as Biomedical Materials
The development of new nanomaterials with high biomedical performance and low toxicity is essential to obtain more efficient therapy and precise diagnostic tools and devices. Recently, scientists often face issues of balancing between positive therapeutic effects of metal oxide nanoparticles and their toxic side effects. In this review, considering metal oxide nanoparticles as important technological and biomedical materials, the authors provide a comprehensive review of researches on metal oxide nanoparticles, their nanoscale physicochemical properties, defining specific applications in the various fields of nanomedicine. Authors discuss the recent development of metal oxide nanoparticles that were employed as biomedical materials in tissue therapy, immunotherapy, diagnosis, dentistry, regenerative medicine, wound healing and biosensing platforms. Besides, their antimicrobial, antifungal, antiviral properties along with biotoxicology were debated in detail. The significant breakthroughs in the field of nanobiomedicine have emerged in areas and numbers predicting tremendous application potential and enormous market value for metal oxide nanoparticles.
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment
Liposomes are well-known nanoparticles with a non-toxic nature and the ability to incorporate both hydrophilic and hydrophobic drugs simultaneously. As modern drug delivery formulations are produced by emerging technologies, numerous advantages of liposomal drug delivery systems over conventional liposomes or free drug treatment of cancer have been reported. Recently, liposome nanocarriers have exhibited high drug loading capacity, drug protection, improved bioavailability, enhanced intercellular delivery, and better therapeutic effect because of resounding success in targeting delivery. The site targeting of smart responsive liposomes, achieved through changes in their physicochemical and morphological properties, allows for the controlled release of active compounds under certain endogenous or exogenous stimuli. In that way, the multifunctional and stimuli-responsive nanocarriers for the drug delivery of cancer therapeutics enhance the efficacy of treatment prevention and fighting over metastases, while limiting the systemic side effects on healthy tissues and organs. Since liposomes constitute promising nanocarriers for site-targeted and controlled anticancer drug release, this review focuses on the recent progress of smart liposome achievements for anticancer drug delivery applications.
Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Metal oxide nanoparticles and their applications in nanotechnology
Considering metal oxide nanoparticles as important technological materials, authors provide a comprehensive review of researches on metal oxide nanoparticles, their synthetic strategies, and techniques, nanoscale physicochemical properties, defining specific industrial applications in the various fields of applied nanotechnology. This work expansively reviews the recent developments of semiconducting metal oxide gas sensors for environmental gases including CO 2 , O 2 , O 3 , and NH 3 ; highly toxic gases including CO, H 2 S, and NO 2 ; combustible gases such as CH 4 , H 2 , and liquefied petroleum gas; and volatile organic compounds gases. The gas sensing properties of different metal oxides nanoparticles towards specific target gases have been individually discussed. Promising metal oxide nanoparticles for sensitive and selective detection of each gas have been identified. This review also categorizes metal oxides sensors by analyte gas and also summarizes the major techniques and synthesis strategies used in nanotechnology. Additionally, strategies, sensing mechanisms and related applications of semiconducting metal oxide materials are also discussed in detail. Related applications are innumerable trace to ultratrace-level gas sensors, batteries, magnetic storage media, various types of solar cells, metal oxide nanoparticles applications in catalysis, energy conversion, and antennas (including microstrip and patch-type optically transparent antennas), rectifiers, optoelectronic, and electronics.
Morpho/Opto-structural Characterizations and XRD-Assisted Estimation of Crystallite Size and Strain in MgO Nanoparticles by Applying Williamson–Hall and Size–Strain Techniques
Magnesium oxide (MgO) nanoparticles were fabricated at the ambient temperature by a chemical precipitation method. The as-synthesized nanoparticles were analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectrometer (EDS), particle size analyzer (PSA), Fourier transform infrared spectroscopy (FTIR), and UV–Vis absorption spectroscopy. The strain and crystallite size of the prepared nanopowders were studied by means of X-ray profile calculations. The size–strain plot (SSP) and Williamson–Hall (W–H) techniques were applied to investigate the effect of crystallite size and obtained strain in the lattice based on the peak broadening of MgO nanopowders. Various models such as size–strain plot (SSP), uniform deformation stress model (UDSM), uniform deformation model (UDM), and uniform deformation energy density model (UDEDM) method were applied to estimate certain physical parameters including strain, energy density, and stress values. Besides, the measured crystallite size by the above-mentioned models, FESEM, and TEM images and Scherrer's equation were compared to each other. The optical band gap energy of the nanoparticles estimated from the UV–Vis absorption spectrum was found to be equal to 4.6 and 4.9 eV.
One-Step Magneton Sputtering of Crystalline Cu-Doped TiO2 Coatings: Characterization and Antibacterial Activity
Early biofilm formation could be inhibited by applying a thin biocompatible copper coating to reduce periprosthetic infections. In this study, we deposited crystalline Cu-doped TiO2 films using one-step DC magnetron sputtering in an oxygen atmosphere on a biased Ti6Al4V alloy without external heating. The bias voltage varied from −25 V to −100 V, and the resultant substrate temperature was measured. The deposited coatings were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness, scratch and hydrophilicity tests, potentiodynamic polarization measurements, and antibacterial assays against S. aureus and E. coli. The findings demonstrated that when a higher negative bias is applied, the substrate temperature drops, and the anatase to rutile transformation is initiated without indicating obvious Cu-containing phases. The SEM images of the films showed spherical agglomerates with homogeneously distributed Cu with decreasing Cu content as the bias value increased. Higher bias results in the grain refinement of the thinning coatings with more lattice microstrain and more defects, together with an increase in water contact angles and hardness values. Samples biased at −75 V exhibited the highest adhesive strength between coatings and substrate, whereas the specimen biased at −50 V demonstrated higher corrosion resistance. Cu-containing TiO2 coatings with pure anatase phase composition and Cu concentrations of 2.62 wt.% demonstrated excellent bactericidal activity against both S. aureus and E. coli. The layers containing 2.34 wt.% Cu exhibited very good antibacterial properties against S. aureus, only. According to these findings, the produced copper-doped TiO2 coatings have high bactericidal qualities in vitro and may be used to prepare orthopaedic and dental implants in the future.
Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants
To fix the bone in orthopedics, it is almost always necessary to use implants. Metals provide the needed physical and mechanical properties for load-bearing applications. Although widely used as biomedical materials for the replacement of hard tissue, metallic implants still confront challenges, among which the foremost is their low biocompatibility. Some of them also suffer from excessive wear, low corrosion resistance, infections and shielding stress. To address these issues, various coatings have been applied to enhance their in vitro and in vivo performance. When merged with the beneficial properties of various bio-ceramic or polymer coatings remarkable bioactive, osteogenic, antibacterial, or biodegradable composite implants can be created. In this review, bioactive and high-performance coatings for metallic bone implants are systematically reviewed and their biocompatibility is discussed. Updates in coating materials and formulations for metallic implants, as well as their production routes, have been provided. The ways of improving the bioactive coating performance by incorporating bioactive moieties such as growth factors, osteogenic factors, immunomodulatory factors, antibiotics, or other drugs that are locally released in a controlled manner have also been addressed.
Plant-based meat analogue (PBMA) as a sustainable food: a concise review
The global community is in a quest for nutritional and environment-friendly resources as a part of their food habit. The ubiquitous trend of veganism tied with the increasing apprehensions towards animal welfare, negative impact on human health and the environment has escalated the demand for meat alternatives mainly plant-based meat analogues (PBMA). Protein-rich bioresources such as cereals, vegetables, and algae have been explored to mimic animal meat in a similar flavour, texture, sensory and aromatic properties. This review aims to summarize the recent advancements in functional food technology based on vegetal proteins, a comparative account of traditional and commercially available meat alternates. The literature search for the last 10 years shows the rise in research on plant ingredients to develop novel human foods. A brief account of various production methods and their processing effects to improve the structural and techno-functionality of PBMA is suggested for designing sustainable food. The different combinations of plant and animal proteins are discussed to enhance the nutritional aspect, organoleptic profile and shelf-life of available food products. The positive feedback resulted in booming food industries across the world, incorporating vegetal proteins. The global market trend introducing well-established and promising food brands is listed to discuss the prospects of PBMA.
Effect of Co-Sputtered Copper and Titanium Oxide Coatings on Bacterial Resistance and Cytocompatibility of Osteoblast Cells
One of the primary risk factors for implant failure is thought to be implant-related infections during the early healing phase. Developing coatings with cell stimulatory behaviour and bacterial adhesion control is still difficult for bone implants. This study proposes an approach for one-step deposition of biocompatible and antimicrobial Cu-doped TiO2 coatings via glow-discharge sputtering of a mosaic target. During the deposition, the bias of the Ti6Al4V substrates was changed. Structure examination, phase analysis, and surface morphology were carried out using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The hardness values and hydrophilic and corrosion performance were also evaluated together with cytocompatible and antibacterial examinations against E. coli and S. aureus. The results show great chemical and phase control of the bias identifying rutile, anatase, CuO, or ternary oxide phases. It was found that by increasing the substrate bias from 0 to −50 V the Cu content increased from 15.3 up to 20.7 at% while at a high bias of −100 V, the copper content reduced to 3 at%. Simultaneously, apart from the Cu2+ state, Cu1+ is also found in the biased samples. Compared with the bare alloy, the hardness, the water contact angle and corrosion resistance of the biased coatings increased. According to an assessment of in vitro cytocompatibility, all coatings were found to be nontoxic to MG-63 osteoblast cells over the time studied. Copper release and cell-surface interactions generated an antibacterial effect against E. coli and S. aureus strains. The −50 V biased coating combined the most successful results in inhibiting bacterial growth and eliciting the proper responses from osteoblastic cells because of its phase composition, electrochemical stability, hydrophilicity, improved substrate adhesion, and surface roughness. Using this novel surface modification approach, we achieved multifunctionality through controlled copper content and oxide phase composition in the sputtered films.
Influence of Deposition Temperature on Microstructure and Properties of Tantalum Oxide Sputtered Coatings
To increase the wear and corrosion resistance of (α + β) titanium-aluminium-vanadium (Ti6Al4V) alloy, ceramic tantalum oxide coatings were deposited by direct current (DC) magnetron sputtering at three different substrate temperatures—400, 450, and 500 °C. The crystallographic structure, surface morphology, chemical compositions, film adhesion, and hardness of the coatings were described using XRD, SEM, EDS, scratch tests, and microhardness measurements. The samples’ ability to withstand corrosion was assessed using electrochemical studies. Results revealed that thin films have an amorphous or crystalline structure dependent on temperature. The film’s thicknesses varied between 560 and 600 nm. With the increase in deposition temperature, the hardness of the film rose. All oxide coatings were tightly adherent to the titanium alloy substrate, and critical force increased from about 8.6 up to 20 N when the temperature rose from 400 to 500 °C. During the polarisation investigations, after 1 h of immersion, a drop in current density (jcorr) verified an improvement in the corrosion resistance of the amorphous and well-crystalline coatings. A two-layer model of the surface film accurately describes the coated systems’ electrochemical behaviour. However, according to the EIS analysis, the well-crystalline film deteriorates greatly, whereas the amorphous film prevents penetration during the 7-day immersion test in SBF. The wettability tests demonstrated the hydrophilic nature of the coatings, and after seven days, the mineralisation of calcium phosphate proves the coatings become bioactive in simulated bodily fluid (SBF). Thus, we produced films of tantalum oxide, which, with the proper deposition parameters, may prove to be appropriate surfaces for titanium-based implant bio-applications.