Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34
result(s) for
"Ninomiya, Haruaki"
Sort by:
Impact of Hyper- and Hypo-Uricemia on Kidney Function
2023
Uric acid (UA) forms monosodium urate (MSU) crystals to exert proinflammatory actions, thus causing gout arthritis, urolithiasis, kidney disease, and cardiovascular disease. UA is also one of the most potent antioxidants that suppresses oxidative stress. Hyper andhypouricemia are caused by genetic mutations or polymorphism. Hyperuricemia increases urinary UA concentration and is frequently associated with urolithiasis, which is augmented by low urinary pH. Renal hypouricemia (RHU) is associated with renal stones by increased level of urinary UA, which correlates with the impaired tubular reabsorption of UA. Hyperuricemia causes gout nephropathy, characterized by renal interstitium and tubular damage because MSU precipitates in the tubules. RHU is also frequently associated with tubular damage with elevated urinary beta2-microglobulin due to increased urinary UA concentration, which is related to impaired tubular UA reabsorption through URAT1. Hyperuricemia could induce renal arteriopathy and reduce renal blood flow, while increasing urinary albumin excretion, which is correlated with plasma xanthine oxidoreductase (XOR) activity. RHU is associated with exercise-induced kidney injury, since low levels of SUA could induce the vasoconstriction of the kidney and the enhanced urinary UA excretion could form intratubular precipitation. A U-shaped association of SUA with organ damage is observed in patients with kidney diseases related to impaired endothelial function. Under hyperuricemia, intracellular UA, MSU crystals, and XOR could reduce NO and activate several proinflammatory signals, impairing endothelial functions. Under hypouricemia, the genetic and pharmacological depletion of UA could impair the NO-dependent and independent endothelial functions, suggesting that RHU and secondary hypouricemia might be a risk factor for the loss of kidney functions. In order to protect kidney functions in hyperuricemic patients, the use of urate lowering agents could be recommended to target SUA below 6 mg/dL. In order to protect the kidney functions in RHU patients, hydration and urinary alkalization may be recommended, and in some cases an XOR inhibitor might be recommended in order to reduce oxidative stress.
Journal Article
Inhibition of the uric acid efflux transporter ABCG2 enhances stimulating effect of soluble uric acid on IL-1β production in murine macrophage-like J774.1 cells
by
Taufiq, Fikri
,
Sawano, Tatsuya
,
Hisatome, Ichiro
in
Animals
,
Caspases - pharmacology
,
Genetics
2023
Soluble uric acid (UA) absorbed by cells through UA transporters (UATs) accumulates intracellularly, activates the NLRP3 inflammasome and thereby increases IL-1β secretion. ABCG2 transporter excludes intracellular UA. However, it remains unknown whether ABCG2 inhibition leads to intracellular accumulation of UA and increases IL-1β production. In this study, we examined whether genetic and pharmacological inhibition of ABCG2 could increase IL-1β production in mouse macrophage-like J774.1 cells especially under hyperuricemic conditions. We determined mRNA and protein levels of pro-IL-1β, mature IL-1β, caspase-1 and several UATs in culture supernatants and lysates of J774.1 cells with or without soluble UA pretreatment. Knockdown experiments using an shRNA against ABCG2 and pharmacological experiments with an ABCG2 inhibitor were conducted. Extracellularly applied soluble UA increased protein levels of pro-IL-1β, mature IL-1β and caspase-1 in the culture supernatant from lipopolysaccharide (LPS)-primed and monosodium urate crystal (MSU)-stimulated J774.1 cells. J774.1 cells expressed UATs of ABCG2, GLUT9 and MRP4, and shRNA knockdown of ABCG2 increased protein levels of pro-IL-1β and mature IL-1β in the culture supernatant. Soluble UA increased mRNA and protein levels of ABCG2 in J774.1 cells without either LPS or MSU treatment. An ABCG2 inhibitor, febuxostat, but not a urate reabsorption inhibitor, dotinurad, enhanced IL-1β production in cells pretreated with soluble UA. In conclusion, genetic and pharmacological inhibition of ABCG2 enhanced IL-1β production especially under hyperuricemic conditions by increasing intracellularly accumulated soluble UA that activates the NLRP3 inflammasome and pro-IL-1β transcription in macrophage-like J774.1 cells.
Journal Article
α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats
2022
Cell-based therapy using adipose-derived stem cells (ADSCs) has emerged as a novel therapeutic approach to treat heart failure after myocardial infarction (MI). The purpose of this study was to determine whether inhibition of α1-adrenergic receptors (α1-ARs) in ADSCs attenuates ADSC sheet-induced improvements in cardiac functions and inhibition of remodeling after MI. ADSCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ADSCs, we determined the mRNA levels of vascular endothelial growth factor (VEGF)-A and α1-AR under normoxia or hypoxia and the effects of norepinephrine and an α1-blocker, doxazosin, on the mRNA levels of angiogenic factors. Hypoxia increased α1-AR and VEGF mRNA levels in ADSCs. Norepinephrine further increased VEGF mRNA expression under hypoxia; this effect was abolished by doxazosin. Tube formation of human umbilical vein endothelial cells was promoted by conditioned media of ADSCs treated with the α1 stimulant phenylephrine under hypoxia but not by those of ADSCs pretreated with phenylephrine plus doxazosin. In in vivo studies using rats with MI, transplanted ADSC sheets improved cardiac functions, facilitated neovascularization, and suppressed fibrosis after MI. These effects were abolished by doxazosin treatment. Pathway analysis from RNA sequencing data predicted significant upregulation of α1-AR mRNA expression in transplanted ADSC sheets and the involvement of α1-ARs in angiogenesis through VEGF. In conclusion, doxazosin abolished the beneficial effects of ADSC sheets on rat MI hearts as well as the enhancing effect of norepinephrine on VEGF expression in ADSCs, indicating that ADSC sheets promote angiogenesis and prevent cardiac dysfunction and remodeling after MI via their α1-ARs.
Journal Article
Pretreatment with cilnidipine attenuates hypoxia/reoxygenation injury in HL-1 cardiomyocytes through enhanced NO production and action potential shortening
2020
Myocardial ischemia/reperfusion injury worsens in the absence of nitric oxide synthase (NOS). Cilnidipine, a Ca2+ channel blocker, has been reported to activate endothelial NOS (eNOS) and increases nitric oxide (NO) in vascular endothelial cells. We examined whether pretreatment with cilnidipine could attenuate cardiac cell deaths including apoptosis caused by hypoxia/reoxygenation (H/R) injury. HL-1 mouse atrial myocytes as well as H9c2 rat ventricular cells were exposed to H/R, and cell viability was evaluated by an autoanalyzer and flow cytometry; eNOS expression, NO production, and electrophysiological properties were also evaluated by western blotting, colorimetry, and patch clamping, respectively, in the absence and presence of cilnidipine. Cilnidipine enhanced phosphorylation of eNOS and NO production in a concentration-dependent manner, which was abolished by siRNAs against eNOS or an Hsp90 inhibitor, geldanamycin. Pretreatment with cilnidipine attenuated cell deaths including apoptosis during H/R; this effect was reproduced by an NO donor and a xanthine oxidase inhibitor. The NOS inhibitor L-NAME abolished the protective action of cilnidipine. Pretreatment with cilnidipine also attenuated H9c2 cell death during H/R. Additional cilnidipine treatment during H/R did not significantly enhance its protective action. There was no significant difference in the protective effect of cilnidipine under normal and high Ca2+ conditions. Action potential duration (APD) of HL-1 cells was shortened by cilnidipine, with this shortening augmented after H/R. L-NAME attenuated the APD shortening caused by cilnidipine. These findings indicate that cilnidipine enhances NO production, shortens APD in part by L-type Ca2+ channel block, and thereby prevents HL-1 cell deaths during H/R.
Journal Article
Kv1.5 channel mediates monosodium urate-induced activation of NLRP3 inflammasome in macrophages and arrhythmogenic effects of urate on cardiomyocytes
by
Li, Peili
,
Taufiq, Fikri
,
Lanaspa, Miguel A.
in
Action potential
,
action potentials
,
Animal Anatomy
2022
Background
Gout is usually found in patients with atrial fibrillation (AF). K+ efflux is a common trigger of NLRP3 inflammasome activation which is involved in the pathogenesis of AF. We investigated the role of the K+ channel Kv1.5 in monosodium urate crystal (MSU)-induced activation of the NLRP3 inflammasome and electrical remodeling in mouse and human macrophages J774.1 and THP-1, and mouse atrial myocytes HL-1.
Methods and Results
Macrophages, primed with lipopolysaccharide (LPS), were stimulated by MSU. HL-1 cells were incubated with the conditioned medium (CM) from MSU-stimulated macrophages. Western blot, ELISA and patch clamp were used. MSU induced caspase-1 expression in LPS-primed J774.1 cells and IL-1β secretion, suggesting NLRP3 inflammasome activation. A selective Kv1.5 inhibitor, diphenyl phosphine oxide-1 (DPO-1), and siRNAs against Kv1.5 suppressed the levels of caspase-1 and IL-1β. MSU reduced intracellular K
+
concentration which was prevented by DPO-1 and siRNAs against Kv1.5. MSU increased expression of Hsp70, and Kv1.5 on the plasma membrane. siRNAs against Hsp70 were suppressed but heat shock increased the expression of Hsp70, caspase-1, IL-1β, and Kv1.5 in MSU-stimulated J774.1 cells. The CM from MSU-stimulated macrophages enhanced the expression of caspase-1, IL-1β and Kv1.5 with increased Kv1.5-mediated currents that shortened action potential duration in HL-1 cells. These responses were abolished by DPO-1 and a siRNA against Kv1.5.
Conclusions
Kv1.5 regulates MSU-induced activation of NLRP3 inflammasome in macrophages. MSUrelated activation of NLRP3 inflammasome and electrical remodeling in HL-1 cells are via macrophages. Kv1.5 may have therapeutic value for diseases related to gout-induced activation of the NLRP3 inflammsome, including AF.
Journal Article
Azelnidipine protects HL-1 cardiomyocytes from hypoxia/reoxygenation injury by enhancement of NO production independently of effects on gene expression
by
Minato, Hiroyuki
,
Otsuki, Akihiro
,
Yamamoto, Kazuhiro
in
Acetylcysteine
,
Action potential
,
Action Potentials - drug effects
2024
It remains to be elucidated whether Ca
2+
antagonists induce pharmacological preconditioning to protect the heart against ischemia/reperfusion injury. The aim of this study was to determine whether and how pretreatment with a Ca
2+
antagonist, azelnidipine, could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury in vitro. Using HL-1 cardiomyocytes, we studied effects of azelnidipine on NO synthase (NOS) expression, NO production, cell death and apoptosis during H/R. Action potential durations (APDs) were determined by the whole-cell patch-clamp technique. Azelnidipine enhanced endothelial NOS phosphorylation and NO production in HL-1 cells under normoxia, which was abolished by a heat shock protein 90 inhibitor, geldanamycin, and an antioxidant,
N
-acetylcysteine. Pretreatment with azelnidipine reduced cell death and shortened APDs during H/R. These effects of azelnidipine were diminished by a NOS inhibitor, L-NAME, but were influenced by neither a T-type Ca
2+
channel inhibitor, NiCl
2
, nor a N-type Ca
2+
channel inhibitor, ω-conotoxin. The azelnidipine-induced reduction in cell death was not significantly enhanced by either additional azelnidipine treatment during H/R or increasing extracellular Ca
2+
concentrations. RNA sequence (RNA-seq) data indicated that azelnidipine-induced attenuation of cell death, which depended on enhanced NO production, did not involve any significant modifications of gene expression responsible for the NO/cGMP/PKG pathway. We conclude that pretreatment with azelnidipine protects HL-1 cardiomyocytes against H/R injury via NO-dependent APD shortening and L-type Ca
2+
channel blockade independently of effects on gene expression.
Journal Article
A Bicyclic 1-Deoxygalactonojirimycin Derivative as a Novel Pharmacological Chaperone for GM1 Gangliosidosis
by
Aguilar-Moncayo, Matilde
,
García-Moreno, M. Isabel
,
Hirano, Yuki
in
1-Deoxynojirimycin - analogs & derivatives
,
1-Deoxynojirimycin - pharmacology
,
Administration, Oral
2013
Lysosomal β-galactosidase (β-Gal) deficiency causes a group of disorders that include neuronopathic GM1 gangliosidosis and non-neuronopathic Morquio B disease. We have previously proposed the use of small molecule ligands of β-Gal as pharmacological chaperones (PCs) for the treatment of GM1 gangliosidosis brain pathology. Although it is still under development, PC therapy has yielded promising preclinical results in several lysosomal diseases. In this study, we evaluated the effect of bicyclic 1-deoxygalactonojirimycin (DGJ) derivative of the sp2-iminosugar type, namely 5N,6S-(N′-butyliminomethylidene)-6-thio-1- deoxygalactonojirimycin (6S-NBI-DGJ), as a novel PC for human mutant β-Gal. In vitro, 6S-NBI-DGJ had the ability to inhibit the activity of human β-Gal in a competitive manner and was able to protect this enzyme from heat-induced degradation. Computational analysis supported that the rigid glycone bicyclic core of 6S-NBI-DGJ binds to the active site of the enzyme, with the aglycone N′-butyl substituent, in a precise E-orientation, located at a hydrophobic region nearby. Chaperone potential profiling indicated significant increases of enzyme activity in 24 of 88 β-Gal mutants, including four common mutations. Finally, oral administration of 6S-NBI-DGJ ameliorated the brain pathology of GM1 gangliosidosis model mice. These results suggest that 6S-NBI-DGJ is a novel PC that may be effective on a broad range of β-Gal mutants.
Journal Article
Hsp70 promotes maturation of uromodulin mutants that cause familial juvenile hyperuricemic nephropathy and suppresses cellular damage
2022
BackgroundFamilial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder caused by mutations in UMOD. Here we studied effects of genetic expression and pharmacological induction of Hsp70 on the UMOD mutants C112Y and C217G.MethodsWe expressed wild type (WT), C112Y and C217G in HEK293 cells and studied their maturation and cellular damage using western blot and flow cytometry.ResultsExpression of C112Y or C217G increased pro-apoptotic proteins, decreased anti-apoptotic proteins, and induced cellular apoptosis as examined by annexin V staining and flow cytometry. Overexpression of Hsp70 or administration of an Hsp70 inducer geranylgeranylacetone (GGA) promoted maturation of the mutant proteins, increased their secreted forms, normalized the levels of pro- and anti-apoptotic proteins and suppressed apoptosis.ConclusionThese findings indicated that Hsp70 enhanced maturation of C112Y and C217G and reduced cellular apoptosis, suggesting that Hsp70 induction might be of a therapeutic value for treatment of FJHN.
Journal Article
Inhibitory effects of local anesthetics on the proteasome and their biological actions
by
Kita, Akiko
,
Hisatome, Ichiro
,
Murakami, Takuto
in
119/118
,
631/535/1267
,
692/4028/67/1059/153
2017
Local anesthetics (LAs) inhibit endoplasmic reticulum-associated protein degradation, however the mechanisms remain elusive. Here, we show that the clinically used LAs pilsicainide and lidocaine bind directly to the 20S proteasome and inhibit its activity. Molecular dynamic calculation indicated that these LAs were bound to the β5 subunit of the 20S proteasome, and not to the other active subunits, β1 and β2. Consistently, pilsicainide inhibited only chymotrypsin-like activity, whereas it did not inhibit the caspase-like and trypsin-like activities. In addition, we confirmed that the aromatic ring of these LAs was critical for inhibiting the proteasome. These LAs stabilized p53 and suppressed proliferation of p53-positive but not of p53-negative cancer cells.
Journal Article
Apoptosis induced by an uromodulin mutant C112Y and its suppression by topiroxostat
by
Nanba, Eiji
,
Maharani, Nani
,
Hisatome, Ichiro
in
Adult
,
Apoptosis - drug effects
,
Gout - drug therapy
2015
Background
Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder caused by mutations in
UMOD
that encodes uromodulin. Topiroxostat, a novel non-purine analog, selectively inhibits xanthine oxidase and reduces the serum uric acid levels and the urinary albuminuria.
Methods
Genomic DNA of a patient was extracted from peripheral white blood. Exons and flanking sequences of
UMOD
were amplified by PCR with primers. Mutation analysis was performed by direct sequencing of the PCR products. The wild-type and mutant uromodulin were expressed in HEK293 cells and analyzed by western blotting, immunoprecipitation, immunofluorescence, and flow cytometry.
Results
We identified an FJHN patient who carried a novel
UMOD
mutation G335A (C112Y). The levels of both cytosolic and secreted C112Y protein were significantly decreased compared with the wild-type, whereas the level of ubiquitination was higher in C112Y than that in the wild type. The half-life of C112Y was shortened and it was restored by a proteasome inhibitor MG132. Immunofluorescence revealed decreased levels of C112Y in the Golgi apparatus and on the plasma membrane. Expression of C112Y induced cellular apoptosis as revealed by flow cytometry. Apoptosis induced by C112Y was suppressed by topiroxostat.
Conclusion
C112Y causes its protein instability resulting cellular apoptosis which could be suppressed with topiroxostat.
Journal Article