Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
28 result(s) for "Nishikawa, Gen"
Sort by:
Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression via CCR5
Mesenchymal stem cells (MSCs) are recruited from BM to the stroma of developing tumors, where they serve as critical components of the tumor microenvironment by secreting growth factors, cytokines, and chemokines. The role of MSCs in colorectal cancer (CRC) progression was controversial. In this study, we found that C-C chemokine receptor type 5 (CCR5) ligands (i.e., C-C motif chemokine ligand 3 (CCL3), CCL4, and CCL5) were highly produced from MSCs using a chemokine array screening with conditioned media from the cultured human MSCs. A relatively strong CCR5 expression could be detected within the cytoplasm of several CRC cell lines. Regarding the effect of MSC, we found that the xenografts in which CCR5-overexpressing HCT116 cells were inoculated into immunocompromised mice were highly promoted in vivo by a mixture with MSCs. Notably, the CCR5 inhibitor, maraviroc, significantly abolished the MSC-induced tumor growth in vivo. In human clinical specimens ( n  = 89), 20 cases (29%) were high for CCR5, whereas 69 cases (71%) were low. Statistical analyses indicated that CCR5 expression in primary CRC was associated with CRC patients’ prognosis. Especially, stage III/IV patients with CCR5-high CRCs exhibited a significantly poorer prognosis than those with CCR5-low CRCs. Furthermore, we investigated the effects of preoperative serum CCR5 ligands on patients’ prognosis ( n  = 114), and found that CRC patients with high serum levels of CCL3 and CCL4 exhibited a poorer prognosis compared to those with low levels of CCL3 and CCL4, while there was no association between CCL5 and prognosis. These results suggest that the inhibition of MSC–CRC interaction by a CCR5 inhibitor could provide the possibility of a novel therapeutic strategy for CRC, and that serum levels of CCL3 and CCL4 could be predictive biomarkers for the prognosis of CRC patients.
Targeting Asparagine Synthetase in Tumorgenicity Using Patient-Derived Tumor-Initiating Cells
Reprogramming of energy metabolism is regarded as one of the hallmarks of cancer; in particular, oncogenic RAS has been shown to be a critical regulator of cancer metabolism. Recently, asparagine metabolism has been heavily investigated as a novel target for cancer treatment. For example, Knott et al. showed that asparagine bioavailability governs metastasis in a breast cancer model. Gwinn et al. reported the therapeutic vulnerability of asparagine biosynthesis in KRAS-driven non-small cell lung cancer. We previously reported that KRAS-mutated CRC cells can adapt to glutamine depletion through upregulation of asparagine synthetase (ASNS), an enzyme that synthesizes asparagine from aspartate. In our previous study, we assessed the efficacy of asparagine depletion using human cancer cell lines. In the present study, we evaluated the clinical relevance of asparagine depletion using a novel patient-derived spheroid xenograft (PDSX) mouse model. First, we examined ASNS expression in 38 spheroid lines and found that 12 lines (12/37, 32.4%) displayed high ASNS expression, whereas 26 lines (25/37, 67.6%) showed no ASNS expression. Next, to determine the role of asparagine metabolism in tumor growth, we established ASNS-knockdown spheroid lines using lentiviral short hairpin RNA constructs targeting ASNS. An in vitro cell proliferation assay demonstrated a significant decrease in cell proliferation upon asparagine depletion in the ASNS-knockdown spheroid lines, and this was not observed in the control spheroids lines. In addition, we examined asparagine inhibition with the anti-leukemia drug L-asparaginase (L-Asp) and observed a considerable reduction in cell proliferation at a low concentration (0.1 U/mL) in the ASNS-knockdown spheroid lines, whereas it exhibited limited inhibition of control spheroid lines at the same concentration. Finally, we used the PDSX model to assess the effects of asparagine depletion on tumor growth in vivo. The nude mice injected with ASNS-knockdown or control spheroid lines were administered with L-Asp once a day for 28 days. Surprisingly, in mice injected with ASNS-knockdown spheroids, the administration of L-Asp dramatically inhibited tumor engraftment. On the other hands, in mice injected with control spheroids, the administration of L-Asp had no effect on tumor growth inhibition at all. These results suggest that ASNS inhibition could be critical in targeting asparagine metabolism in cancers.
Clinical Role of ASCT2 (SLC1A5) in KRAS-Mutated Colorectal Cancer
Mutation in the KRAS gene induces prominent metabolic changes. We have recently reported that KRAS mutations in colorectal cancer (CRC) cause alterations in amino acid metabolism. However, it remains to be investigated which amino acid transporter can be regulated by mutated KRAS in CRC. Here, we performed a screening of amino acid transporters using quantitative reverse-transcription polymerase chain reaction (RT-PCR) and then identified that ASCT2 (SLC1A5) was up-regulated through KRAS signaling. Next, immunohistochemical analysis of 93 primary CRC specimens revealed that there was a significant correlation between KRAS mutational status and ASCT2 expression. In addition, the expression level of ASCT2 was significantly associated with tumor depth and vascular invasion in KRAS-mutant CRC. Notably, significant growth suppression and elevated apoptosis were observed in KRAS-mutant CRC cells upon SLC1A5-knockdown. ASCT2 is generally known to be a glutamine transporter. Interestingly, SLC1A5-knockdown exhibited a more suppressive effect on cell growth than glutamine depletion. Furthermore, SLC1A5-knockdown also resulted in the suppression of cell migration. These results indicated that ASCT2 (SLC1A5) could be a novel therapeutic target against KRAS-mutant CRC.
Intraneural fibrosis within ilioinguinal nerve in inguinal hernia patients with preoperative pain: it’s the sign of irreversible nerve injury, isn’t it?
PurposePreoperative pain is known as one of the most powerful risk factors for chronic postoperative inguinal pain (CPIP), while its pathogenesis has not been fully elucidated. The aim of the present study was to evaluate patients with preoperative pain from the pathological perspective and discuss the potential pathogenesis of CPIP in those patients.MethodsThis was a single-institutional retrospective study. The study population was inguinal hernia patients with preoperative pain who underwent open anterior hernia repair for primary inguinal hernia with pragmatic ilioinguinal neurectomy during surgery between March 2021 and March 2023. The primary and secondary outcomes were proportion of collagen deposition and mucus accumulation within ilioinguinal nerve in those patients, respectively, which were evaluated histologically using Image J software.ResultsForty patients were evaluated. Median value of proportion of intraneural collagen deposition was 38.3% (27.7–95.9). These values were positively correlated with the duration of pain (r2=0.468, P<0.001). Median value of proportion of mucus accumulation in ilioinguinal nerve was 50.1% (0–82.0). These values had no correlation with any clinicopathological variables.ConclusionsIn the present study population, all patients with preoperative pain had intraneural fibrosis within ilioinguinal nerve, and its degree had a positive correlation with the pain duration.
SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian target of rapamycin complex 1 signaling pathway
The transcription factor SOX2 is essential for the maintenance of embryonic stem cells and normal development of the esophagus. Our previous study revealed that the SOX2 gene is an amplification target of 3q26.3 in esophageal squamous cell carcinoma (ESCC), and that SOX2 promotes ESCC cell proliferation in vitro. In the present study, we aimed to identify the mechanisms by which SOX2 promotes proliferation of ESCC cells. Using a phosphoprotein array, we assayed multiple signaling pathways activated by SOX2 and determined that SOX2 activated the AKT/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. LY294002, an inhibitor of phosphatidylinositol 3‐kinase, and rapamycin, an inhibitor of mTORC1, suppressed the ability of SOX2 to enhance proliferation of ESCC cells in vitro. Effects of SOX2 knockdown, including reduced levels of phosphorylated AKT and decreased ESCC cell proliferation, were reversed with constitutive activation of AKT with knockdown of phosphatase and tensin homolog. In mouse xenografts, SOX2 promoted in vivo tumor growth of ESCC, which was dependent on AKT/mTORC1 activation. LY294002 suppressed the ability of SOX2 to enhance tumor growth of ESCC by reducing cell proliferation, but not by enhancing apoptosis. Furthermore, tissue microarray analysis of 61 primary ESCC tumors showed a positive correlation between expression levels of SOX2 and phosphorylated AKT. Our findings suggest that SOX2 promotes in vivo tumor growth of ESCC through activation of the AKT/mTORC1 signaling pathway, which enhances cell proliferation.
Loss of KAP3 decreases intercellular adhesion and impairs intracellular transport of laminin in signet ring cell carcinoma of the stomach
Signet-ring cell carcinoma (SRCC) is a unique subtype of gastric cancer that is impaired for cell–cell adhesion. The pathogenesis of SRCC remains unclear. Here, we show that expression of kinesin-associated protein 3 (KAP3), a cargo adaptor subunit of the kinesin superfamily protein 3 (KIF3), a motor protein, is specifically decreased in SRCC of the stomach. CRISPR/Cas9-mediated gene knockout experiments indicated that loss of KAP3 impairs the formation of circumferential actomyosin cables by inactivating RhoA, leading to the weakening of cell–cell adhesion. Furthermore, in KAP3 knockout cells, post-Golgi transport of laminin, a key component of the basement membrane, was inhibited, resulting in impaired basement membrane formation. Together, these findings uncover a potential role for KAP3 in the pathogenesis of SRCC of the stomach.
Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma
The aberrant expression or alteration of microRNAs (miRNAs/miRs) contributes to the development and progression of cancer. In the present study, the functions of miR-96-5p in hepatocellular carcinoma (HCC) were investigated. It was identified that miR-96-5p expression was significantly upregulated in primary HCC tumors compared with their non-tumorous counterparts. A copy number gain was frequently observed at chromosomal region 7q32.2 in which the MIR96 locus is located, suggesting that gene amplification may be one of the mechanisms by which miR-96-5p expression is increased in HCC. Transfection of miR-96-5p mimic into HCC cells decreased the expression of CASP9, which encodes caspase-9, the essential initiator caspase in the mitochondrial apoptotic pathway, at the mRNA and protein levels. A putative binding site for miR-96-5p was identified in the CASP9 3′-untranslated region, and the results of a luciferase assay indicated that CASP9 is a potential direct target of miR-96-5p. The miR-96-5p mimic increased resistance to doxorubicin-and ultraviolet-induced apoptosis through the decrease in caspase-9 expression in HCC cells. Transfection of miR-96-5p inhibitor enhanced the cytotoxic effect of doxorubicin by increasing caspase-9 expression in the HCC cells, suggesting a synergistic effect between the miR-96-5p inhibitor and doxorubicin. In conclusion, the results of the present study suggest that miR-96-5p, which is frequently upregulated in HCC, inhibits apoptosis by targeting CASP9. Therefore, miR-96-5p may be a potential therapeutic target for HCC.
Systematics of the Widely Distributed Japanese Clouded Salamander, Hynobius nebulosus (Amphibia: Caudata: Hynobiidae), and Its Closest Relatives
The abundant clouded salamander from western Japan, Hynobius nebulosus, has long been considered a single widespread species, although some authors have suggested the inclusion of several cryptic species. This led to a molecular and morphological analysis of populations from all parts of the known range. Phylogenetic relationships were inferred from complete sequences of the mitochondrial cytochrome b gene, and nuclear genome differentiations were estimated by multiplexed inter simple sequence repeat genotyping by sequencing (MIG-seq). The results suggest that H. nebulosus hitherto recognized consists of at least nine species. We applied existing names to two of them, H. nebulosus (Temminck et Schlegel) and H. vandenburghi Dunn, and described seven others as new species.
A simpler diagnostic algorithm of the Japan Esophageal Society classification for Barrett’s esophagus-related superficial neoplasia
Background We previously developed a Japan Esophageal Society Barrett’s Esophagus (JES-BE) magnifying endoscopic classification for superficial BE-related neoplasms (BERN) and validated it in a nationwide multicenter study that followed a diagnostic flow chart based on mucosal and vascular patterns (MP, VP) with nine diagnostic criteria. Our present post hoc analysis aims to further simplify the diagnostic criteria for superficial BERN. Methods We used data from our previous study, including 10 reviewers’ assessments for 156 images of high-magnifying narrow-band imaging (HM-NBI) (67 dysplastic and 89 non-dysplastic histology). We statistically analyzed the diagnostic performance of each diagnostic criterion of MP (form, size, arrangement, density, and white zone), VP (form, caliber change, location, and greenish thick vessels [GTV]), and all their combinations to achieve a simpler diagnostic algorithm to detect superficial BERN. Results Diagnostic accuracy values based on the MP of each single criterion or combined criteria showed a marked trend of being higher than those based on VP. In reviewers’ assessments of visible MPs, the combination of irregularity for form, size, or white zone had the highest diagnostic performance, with a sensitivity of 87% and a specificity of 91% for dysplastic histology; in the assessments of invisible MPs, GTV had the highest diagnostic performance among the VP of each single criterion and all combinations of two or more criteria (sensitivity, 93%; specificity, 92%). Conclusion The present post hoc analysis suggests the feasibility of further simplifying the diagnostic algorithm of the JES-BE classification. Further studies in a practical setting are required to validate these results.