Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
649 result(s) for "Nishiyama, Takashi"
Sort by:
Progress on the Synthesis of the Aromathecin Family of Compounds: An Overview
We present a systematic review of the methods developed for the synthesis of the aromathecin family of compounds (benz[6,7]indolizino[1,2-b]quinolin-11(13H)-ones) and their derivatives. These methods can be broadly classified into four categories based on the construction of pentacyclic structures: Category 1: by constructing a pyridone moiety (D-ring) on the pyrroloquinoline ring (A/B/C-ring), Category 2: by constructing a pyridine moiety (B-ring) on the pyrroloisoquinolone ring (C/D/E-ring), Category 3: by constructing an indolizidinone moiety (C/D-ring) in a tandem reaction, and Category 4: by constructing a pyrrolidine moiety (C-ring) on the isoquinolone ring (D/E-ring).
Total Synthesis and Biological Evaluation of 22-Hydroxyacuminatine and the Related Natural Products Norketoyobyrine and Naucleficine
Aromathecin compounds—which contain the same indolizine core structure as camptothecin-like compounds—are expected to show anticancer activity. Among them, 22-hydroxyacuminatine—which has a substituent on the E-ring of the pentacyclic scaffold—exhibits topoisomerase 1 inhibitory activity; therefore, the development of efficient methods for its synthesis has been actively pursued. Herein, we report a versatile synthetic methodology for introducing various substituents on the E-ring, leading to the total synthesis of 22-hydroxyacuminatine as a model compound of the aromathecin family. The synthesis comprises the following key steps: the synthesis of an isoquinoline N-oxide via the thermal cyclization of 2-alkynylbenzaldehyde oxime, the subsequent Reissert–Henze-type reaction to yield an isoquinolone, and the construction of the indolizine moiety (CD-ring) through C–N bond formation via the Mitsunobu reaction. Consequently, a pentacyclic benz[6,7]indolizino[1,2-b]quinolin-11(13H)-one framework is obtained. Using this methodology, the total synthesis of the natural products norketoyobyrine and naucleficine and an intermediate of the latter, which are indoloquinolizidine-type alkaloids, was achieved, and their antiproliferative activity against HCT-116 human colon cancer cells and HepG2 human liver cancer cells was assessed. Naucleficine and its intermediate exhibited moderate antiproliferative activity against HCT-116 cells, with IC50 values of 55.58 and 41.40 μM, respectively.
Plasmid-Based Reverse Genetics System Enabling One-Step Generation of Genotype 3 Hepatitis E Virus
Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus that poses a significant public health risk, yet its study is hindered by the complexity of conventional RNA-based reverse genetics systems. These systems require multiple steps, including genome cloning, in vitro transcription, and capping, making them labor-intensive and susceptible to RNA degradation. In this study, we developed a single-step, plasmid-based HEV expression system that enabled direct intracellular transcription of the full-length HEV genome under a cytomegalovirus immediate-early (CMV-IE) promoter. The viral genome was flanked by hammerhead (HH) and hepatitis delta virus (HDV) ribozymes to ensure precise self-cleavage and the generation of authentic 5′ and 3′ termini. This system successfully supported HEV genome replication, viral protein expression, and progeny virion production at levels comparable to those obtained using in vitro-transcribed, capped HEV RNA. Additionally, a genetic marker introduced into the plasmid construct was stably retained in progeny virions, demonstrating the feasibility of targeted genetic modifications. However, plasmid-derived HEV exhibited delayed replication kinetics, likely due to the absence of an immediate 5′ cap. Attempts to enhance capping efficiency through co-expression of the vaccinia virus capping enzyme failed to improve HEV replication, suggesting that alternative strategies, such as optimizing the promoter design for capping, may be required. This plasmid-based HEV reverse genetics system simplifies the study of HEV replication and pathogenesis and provides a versatile platform for the genetic engineering of the HEV genome.
Effect of solvents on the crystal formation of poly(vinylidene fluoride) film prepared by a spin-coating process
The effect of the solvent evaporation rate and solvent type on the crystal formation of poly(vinylidene fluoride) (PVDF) prepared by spin-coating was evaluated over time. In the much-solvent-remaining state, the crystalline phase of PVDF changed in the order of α, γ and β with the increasing dipole moment of the solvent. In the almost-all-solvent-evaporated state, the crystalline structure of PVDF/hexamethylphosphoramide with a higher dipole moment was dominantly dependent on the evaporation rate and varied in the order of β, γ and α with the increasing solvent evaporation rate. However, PVDF/triethyl phosphate, having a lower dipole moment, always formed the α phase, regardless of the evaporation rate. The PVDF α phase in the concentrated solution state is difficult to transform into the β and γ phases because the potential energy of each PVDF crystalline phase increases in the order of α, γ and β. The PVDF crystalline phase in the spin-coating method is strongly affected by both the polymer–solvent electrostatic interactions and the evaporation conditions. From the results of the crystal transition behavior, it was experimentally supported that the potential energy of the PVDF crystalline structure increases in the order of α, γ and β. The crystalline phase of PVDF film prepared by spin-coating changes both of the polymer–solvent interaction and the evaporation rate. In the much solvent remained state, the crystalline phase changes in the order of α, γ and β phase with increasing the dipole moment of solvent. In the solvent-evaporated state, the crystalline phase of PVDF and solvent with higher dipole moment system changes in the order of β, γ and α phase with increasing the solvent evaporation rate, whereas the PVDF and solvent with lower dipole moment system forms into α phase regardless of the evaporation rate.
Three Distinct Reporter Systems of Hepatitis E Virus and Their Utility as Drug Screening Platforms
The hepatitis E virus (HEV) is increasingly acknowledged as the primary cause of acute hepatitis. While most HEV infections are self-limiting, cases of chronic infection and fulminant hepatitis necessitate the administration of anti-HEV medications. However, there is a lack of specific antiviral drugs designed for HEV, and the currently available drug (ribavirin) has been associated with significant adverse effects. The development of innovative antiviral drugs involves targeting distinct steps within the viral life cycle: the early step (attachment and internalization), middle step (translation and RNA replication), and late step (virus particle formation and virion release). We recently established three HEV reporter systems, each covering one or two of these steps. Using these reporter systems, we identified various potential drug candidates that target different steps of the HEV life cycle. Through rigorous in vitro testing using our robust cell culture system with the genotype 3 HEV strain (JE03-1760F/P10), we confirmed the efficacy of these drugs, when used alone or in combination with existing anti-HEV drugs. This underscores their significance in the quest for an effective anti-HEV treatment. In the present review, we discuss the development of the three reporter systems, their applications in drug screening, and their potential to advance our understanding of the incompletely elucidated HEV life cycle.
Novel Approach to the Construction of Fused Indolizine Scaffolds: Synthesis of Rosettacin and the Aromathecin Family of Compounds
Camptothecin-like compounds are actively employed as anticancer drugs in clinical treatments. The aromathecin family of compounds, which contains the same indazolidine core structure as the camptothecin family of compounds, is also expected to display promising anticancer activity. Therefore, the development of a suitable and scalable synthetic method of aromathecin synthesis is of great research interest. In this study, we report the development of a new synthetic approach for constructing the pentacyclic scaffold of the aromathecin family by forming the indolizidine moiety after synthesizing the isoquinolone moiety. Thermal cyclization of 2-alkynylbenzaldehyde oxime to the isoquinoline N-oxide, followed by a Reissert–Henze-type reaction, forms the key strategy in this isoquinolone synthesis. Under the optimum reaction conditions for the Reissert–Henze-type reaction step, microwave irradiation-assisted heating of the purified N-oxide in acetic anhydride at 50 °C reduced the formation of the 4-acetoxyisoquinoline byproduct to deliver the desired isoquinolone at a 73% yield after just 3.5 h. The eight-step sequence employed afforded rosettacin (simplest member of the aromathecin family) at a 23.8% overall yield. The synthesis of rosettacin analogs was achieved by applying the developed strategy and may be generally applicable to the production of other fused indolizidine compounds.
Delayed Re-Epithelialization in Periostin-Deficient Mice during Cutaneous Wound Healing
Matricellular proteins, including periostin, are important for tissue regeneration. Presently we investigated the function of periostin in cutaneous wound healing by using periostin-deficient ⁻/⁻ mice. Periostin mRNA was expressed in both the epidermis and hair follicles, and periostin protein was located at the basement membrane in the hair follicles together with fibronectin and laminin γ2. Periostin was associated with laminin γ2, and this association enhanced the proteolytic cleavage of the laminin γ2 long form to produce its short form. To address the role of periostin in wound healing, we employed a wound healing model using WT and periostin⁻/⁻ mice and the scratch wound assay in vitro. We found that the wound closure was delayed in the periostin⁻/⁻ mice coupled with a delay in re-epithelialization and with reduced proliferation of keratinocytes. Furthermore, keratinocyte proliferation was enhanced in periostin-overexpressing HaCaT cells along with up-regulation of phosphorylated NF-κB. These results indicate that periostin was essential for keratinocyte proliferation for re-epithelialization during cutaneous wound healing.
Total synthesis of pyrrolo2,3- c quinoline alkaloid: trigonoine B
The first total synthesis of the pyrrolo[2,3- c ]quinoline alkaloid trigonoine B ( 1 ) was accomplished via a six-step sequence involving the construction of an N -substituted 4-aminopyrrolo[2,3- c ]quinoline framework via electrocyclization of 2-(pyrrol-3-yl)benzene containing a carbodiimide moiety as a 2-azahexatriene system. The employed six-step sequence afforded trigonoine B ( 1 ) in 9.2% overall yield. The described route could be employed for the preparation of various N -substituted 4-aminopyrroloquinolines with various biological activities.
Role of Rab13, Protein Kinase A, and Zonula Occludens-1 in Hepatitis E Virus Entry and Cell-to-Cell Spread: Comparative Analysis of Quasi-Enveloped and Non-Enveloped Forms
Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA. Further investigation into the involvement of tight junction (TJ) proteins revealed that the targeted knockdown of zonula occludens-1 (ZO-1) significantly impaired the entry of both eHEV and neHEV. In addition, in ZO-1 knockout (KO) cells inoculated with either viral form, HEV RNA levels in culture supernatants did not increase, even up to 16 days post-inoculation. Notably, the absence of ZO-1 did not affect the adsorption efficiency of eHEV or neHEV, nor did it influence HEV RNA replication. In cell-to-cell spread assays, ZO-1 KO cells inoculated with eHEV showed a lack of expression of HEV ORF2 and ORF3 proteins. In contrast, neHEV-infected ZO-1 KO cells showed markedly reduced ORF2 and ORF3 protein expression within virus-infected foci, compared to non-targeting knockout (NC KO) cells. These findings underscore the crucial role of ZO-1 in facilitating eHEV entry and mediating the cell-to-cell spread of neHEV in infected cells.
In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene
Utilizing nanomachining technologies, it is possible to manipulate the heat transport in graphene by introducing different defects. However, due to the difficulty in suspending large-area single-layer graphene (SLG) and limited temperature sensitivity of the present probing methods, the correlation between the defects and thermal conductivity of SLG is still unclear. In this work, we developed a new method for fabricating micro-sized suspended SLG. Subsequently, a focused ion beam (FIB) was used to create nanohole defects in SLG and tune the heat transport. The thermal conductivity of the same SLG before and after FIB radiation was measured using a novel T-type sensor method on site in a dual-beam system. The nanohole defects decreased the thermal conductivity by about 42%. It was found that the smaller width and edge scrolling also had significant restriction on the thermal conductivity of SLG. Based on the calculation results through a lattice dynamics theory, the increase of edge roughness and stronger scattering on long-wavelength acoustic phonons are the main reasons for the reduction in thermal conductivity. This work provides reliable data for understanding the heat transport in a defective SLG membrane, which could help on the future design of graphene-based electrothermal devices.