Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
94
result(s) for
"Nocera, Daniel G."
Sort by:
Self-healing catalysis in water
2017
Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations.
Journal Article
Self-healing oxygen evolution catalysts
by
Thorarinsdottir, Agnes E.
,
Veroneau, Samuel S.
,
Nocera, Daniel G.
in
639/301/299/886
,
639/638/675
,
639/638/77/885
2022
Electrochemical and photoelectrochemical water splitting offers a scalable approach to producing hydrogen from renewable sources for sustainable energy storage. Depending on the applications, oxygen evolution catalysts (OECs) may perform water splitting under a variety of conditions. However, low stability and/or activity present challenges to the design of OECs, prompting the design of self-healing OECs composed of earth-abundant first-row transition metal oxides. The concept of self-healing catalysis offers a new tool to be employed in the design of stable and functionally active OECs under operating conditions ranging from acidic to basic solutions and from a variety of water sources.
Large scale sustainable energy storage by water splitting benefits from performing the oxygen evolution reaction under a variety of conditions. Here, the authors discuss self-healing catalysis as a new tool in the design of stable and functionally active catalysts in acidic to basic solutions, and a variety of water sources
Journal Article
In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2
2008
The utilization of solar energy on a large scale requires its storage. In natural photosynthesis, energy from sunlight is used to rearrange the bonds of water to oxygen and hydrogen equivalents. The realization of artificial systems that perform \"water splitting\" requires catalysts that produce oxygen from water without the need for excessive driving potentials. Here we report such a catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions. A variety of analytical techniques indicates the presence of phosphate in an approximate 1:2 ratio with cobalt in this material. The pH dependence of the catalytic activity also implicates the hydrogen phosphate ion as the proton acceptor in the oxygen-producing reaction. This catalyst not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.
Journal Article
Light-driven fine chemical production in yeast biohybrids
by
Suástegui, Miguel
,
Moody, Vanessa M.
,
Joshi, Neel S.
in
Baking yeast
,
Biosynthesis
,
Biotechnology
2018
Bacteria and fungi are used industrially to produce commodity fine chemicals at vast scale. Sugars are an economical feedstock, but many of the desired products require enzymatic reduction, meaning that some of the sugar must be diverted to regenerate the cellular reductant NADPH (reduced form of nicotinamide adenine dinucleotide phosphate). Guo et al. show that electrons from light-sensitive nanoparticles can drive reduction of cellular NADPH in yeast, which can then be used for reductive biosynthetic reactions. This system can reduce diversion of carbon to NADPH regeneration and should be compatible with many existing engineered strains of yeast. Science , this issue p. 813 Light-harvesting nanoparticles power reduction reactions in genetically engineered yeast. Inorganic-biological hybrid systems have potential to be sustainable, efficient, and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with the synthetic potential of biological cells. We have developed a modular bioinorganic hybrid platform that consists of highly efficient light-harvesting indium phosphide nanoparticles and genetically engineered Saccharomyces cerevisiae , a workhorse microorganism in biomanufacturing. The yeast harvests photogenerated electrons from the illuminated nanoparticles and uses them for the cytosolic regeneration of redox cofactors. This process enables the decoupling of biosynthesis and cofactor regeneration, facilitating a carbon- and energy-efficient production of the metabolite shikimic acid, a common precursor for several drugs and fine chemicals. Our work provides a platform for the rational design of biohybrids for efficient biomanufacturing processes with higher complexity and functionality.
Journal Article
Powering the Planet: Chemical Challenges in Solar Energy Utilization
2006
Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO₂ emissions in the atmosphere demands that holding atmospheric CO₂ levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species.
Journal Article
Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films
2017
Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid.
Journal Article
Nickel-borate oxygen-evolving catalyst that functions under benign conditions
2010
Thin catalyst films with electrocatalytic water oxidation properties similar to those of a recently reported Co-based catalyst can be electrodeposited from dilute Ni²⁺ solutions in borate electrolyte at pH 9.2 (Bi). The Ni-Bi films can be prepared with precise thickness control and operate at modest overpotential providing an alternative to the Co catalyst for applications in solar energy conversion.
Journal Article
Ten-percent solar-to-fuel conversion with nonprecious materials
by
Lee, Jungwoo Z.
,
Nocera, Daniel G.
,
Buonassisi, Tonio
in
Anodes
,
Catalysts
,
Chemical reactions
2014
Direct solar-to-fuels conversion can be achieved by coupling a photovoltaic device with water-splitting catalysts. We demonstrate that a solar-to-fuels efficiency (SFE) > 10% can be achieved with nonprecious, low-cost, and commercially ready materials. We present a systems design of a modular photovoltaic (PV)-electrochemical device comprising a crystalline silicon PV minimodule and lowcost hydrogen-evolution reaction and oxygen-evolution reaction catalysts, without power electronics. This approach allows for facile optimization en route to addressing lower-cost devices relying on crystalline silicon at high SFEs for direct solar-to-fuels conversion.
Journal Article
Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction
2021
Iron alloying of oxidic cobaltate catalysts results in catalytic activity for oxygen evolution on par with Ni-Fe oxides in base but at much higher alloying compositions. Zero-field
57
Fe Mössbauer spectroscopy and X-ray absorption spectroscopy (XAS) are able to clearly identify Fe
4+
in mixed-metal Co-Fe oxides. The highest Fe
4+
population is obtained in the 40–60% Fe alloying range, and XAS identifies the ion residing in an octahedral oxide ligand field. The oxygen evolution reaction (OER) activity, as reflected in Tafel analysis of CoFeO
x
films in 1 M KOH, tracks the absolute concentration of Fe
4+
. The results reported herein suggest an important role for the formation of the Fe
4+
redox state in activating cobaltate OER catalysts at high iron loadings.
The capturing of high valent iron in a catalytic reaction is important but difficult task. Here, the authors report identification of a high-valent Fe(IV)-species with different spectroscopic tools such as Mössbauer spectroscopy and X-ray absorption spectroscopy during the course of an oxygen evolving reaction.
Journal Article
Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet
by
Helton, Joel S.
,
Chu, Shaoyan
,
Lee, Young S.
in
639/766/119/1001
,
639/766/119/997
,
639/766/119/999
2012
Neutron scattering measurements on single-crystal samples of the mineral herbertsmithite, which is a spin-1/2 kagome-lattice antiferromagnet, provide evidence of fractionalized spin excitations at low temperatures, indicating that the ground state of herbertsmithite may be a quantum spin liquid.
Creating a quantum spin liquid
Quantum spin liquids are exotic states of matter with atomic magnetic moments that are highly correlated but resist ordering even when cooled to absolute zero. They display remarkable collective behaviour, of potential relevance for understanding high
T
c
superconductivity, and host exotic excitations with fractional quantum numbers. On the downside, conclusive evidence for their existence is still missing. Tian-Heng Han
et al
. now report an exciting result from neutron scattering measurements on large single crystals of 'herbertsmithite', a two-dimensional frustrated antiferromagnet. Specifically, they observe the emergence of fractional spin excitations at low temperature, which is a hallmark signature of quantum spin liquids. Fractional spin excitations have so far only been seen in one-dimensional systems.
The experimental realization of quantum spin liquids is a long-sought goal in physics, as they represent new states of matter. Quantum spin liquids cannot be described by the broken symmetries associated with conventional ground states. In fact, the interacting magnetic moments in these systems do not order, but are highly entangled with one another over long ranges
1
. Spin liquids have a prominent role in theories describing high-transition-temperature superconductors
2
,
3
, and the topological properties of these states may have applications in quantum information
4
. A key feature of spin liquids is that they support exotic spin excitations carrying fractional quantum numbers. However, detailed measurements of these ‘fractionalized excitations’ have been lacking. Here we report neutron scattering measurements on single-crystal samples of the spin-1/2 kagome-lattice antiferromagnet ZnCu
3
(OD)
6
Cl
2
(also called herbertsmithite), which provide striking evidence for this characteristic feature of spin liquids. At low temperatures, we find that the spin excitations form a continuum, in contrast to the conventional spin waves expected in ordered antiferromagnets. The observation of such a continuum is noteworthy because, so far, this signature of fractional spin excitations has been observed only in one-dimensional systems. The results also serve as a hallmark of the quantum spin-liquid state in herbertsmithite.
Journal Article