Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
420 result(s) for "Noguchi, Atsushi"
Sort by:
Coherent coupling between a ferromagnetic magnon and a superconducting qubit
Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending to macroscopic dimensions. A magnon is a quantum of such collective excitation modes in ordered spin systems. Here, we demonstrate the coherent coupling between a single-magnon excitation in a millimeter-sized ferromagnetic sphere and a superconducting qubit, with the interaction mediated by the virtual photon excitation in a microwave cavity. We obtain the coupling strength far exceeding the damping rates, thus bringing the hybrid system into the strong coupling regime. Furthermore, we use a parametric drive to realize a tunable magnon-qubit coupling scheme. Our approach provides a versatile tool for quantum control and measurement of the magnon excitations and may lead to advances in quantum information processing.
Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator
Electromagnetic fields carry momentum, which upon reflection on matter gives rise to the radiation pressure of photons. The radiation pressure has recently been utilized in cavity optomechanics for controlling mechanical motions of macroscopic objects at the quantum limit. However, because of the weakness of the interaction, attempts so far had to use a strong coherent drive to reach the quantum limit. Therefore, the single-photon quantum regime, where even the presence of a totally off-resonant single photon alters the quantum state of the mechanical mode significantly, is one of the next milestones in cavity optomechanics. Here we demonstrate an artificial realization of the radiation pressure of microwave photons acting on phonons in a surface acoustic wave resonator. The order-of-magnitude enhancement of the interaction strength originates in the well-tailored, strong, second-order nonlinearity of a superconducting Josephson junction circuit. The synthetic radiation pressure interaction adds a key element to the quantum optomechanical toolbox and can be applied to quantum information interfaces between electromagnetic and mechanical degrees of freedom. The radiation pressure of light on a mechanical oscillator can be used to manipulate mechanical degrees of freedom in the quantum regime. Noguchi et al. use Josephson junctions to realize an artificial system where the radiation pressure of a single photon is stronger than the effect of dissipation.
Hong–Ou–Mandel interference of two phonons in trapped ions
The Hong–Ou–Mandel effect is a quantum phenomenon that involves the interference of bosonic particles and demonstrates their indistinguishability; this effect has been demonstrated previously for photons and neutral atoms, and is now demonstrated for phonons, using a system of trapped ions that are promising building blocks for quantum computers. Hong-Ou-Mandel effect in captivity The Hong-Ou-Mandel effect is a quantum phenomenon that involves the interference of bosonic particles and demonstrates their indistinguishability. The effect has been demonstrated for photons and neutral atoms. Kenji Toyoda and colleagues now demonstrate Hong-Ou-Mandel interference for phonons, which are quasiparticles associated with quantized vibrational modes in a system. The demonstration is performed in a system of trapped ions, which are promising building blocks for quantum computers. In addition, the authors attempt to create an entangled state with the phonons. While phonons have previously only played a supporting role in quantum-computing experiments with trapped ions, this result opens new perspectives for establishing phonons as quantum information carriers in their own right. The quantum statistics of bosons and fermions manifest themselves in the manner in which two indistinguishable particles interfere quantum mechanically. When two photons, which are bosonic particles, enter a beam-splitter with one photon in each input port, they bunch together at either of the two output ports. The corresponding disappearance of the coincidence count is the Hong–Ou–Mandel effect 1 . Here we show the phonon counterpart of this effect in a system of trapped-ion phonons, which are collective excitations derived by quantizing vibrational motions that obey Bose–Einstein statistics. We realize a beam-splitter transformation of the phonons by employing the mutual Coulomb repulsion between ions, and perform a two-phonon quantum interference experiment using that transformation. We observe an almost perfect disappearance of the phonon coincidence between two ion sites, confirming that phonons can be considered indistinguishable bosonic particles. The two-particle interference demonstrated here is purely a quantum effect, without a classical counterpart, hence it should be possible to demonstrate the existence of entanglement on this basis. We attempt to generate an entangled state of phonons at the centre of the Hong–Ou–Mandel dip in the coincidence temporal profile, under the assumption that the entangled phonon state is successfully generated if the fidelity of the analysis pulses is taken into account adequately. Two-phonon interference, as demonstrated here, proves the bosonic nature of phonons in a trapped-ion system. It opens the way to establishing phonon modes as carriers of quantum information in their own right 2 , 3 , 4 , and could have implications for the quantum simulation of bosonic particles 5 , 6 and analogue quantum computation via boson sampling 7 .
A long lifetime floating on neon
Electrons trapped above the surface of solid neon can be used to create qubits using spatial states with different charge distributions. These charge qubits combine direct electric field control with long coherence times.
Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator
UTokyo FOCUS Press releases掲載「たった1つの光子が持つ圧力によって制御された音波の実現 - 振動の量子制御の課題克服へ一歩前進 - 」<研究成果> URI: https://www.u-tokyo.ac.jp/focus/ja/press/z0109_00359.html
Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3D loop-gap cavity
Cavity electro-(opto-)mechanics gives us a quantum tool to access mechanical modes in a massive object. Here we develop a quantum electromechanical system in which a vibrational mode of a SiNx membrane are coupled to a three-dimensional loop-gap superconducting microwave cavity. The tight confinement of the electric field across a mechanically compliant narrow-gap capacitor realizes the quantum strong coupling regime under a red-sideband pump field and the quantum ground state cooling of the mechanical mode. We also demonstrate strong coupling between two mechanical modes, which is induced by two-tone parametric drives and mediated by a virtual photon in the cavity.
Refraction and pupil diameter in 3-year- and 1-month-old children as measured by Spot Vision Screener
Spot Vision Screener (SVS) can conduct refraction tests for both eyes within a short period. This study aims to evaluate the refraction and pupil diameters of 3-year- and 1-month-old Japanese children using SVS in regular medical checkup. We examined 2438 eyes of 1219 children (age: 3-year- and 1-month) in Fujieda (Shizuoka, Japan) to assess their refraction and pupil diameters and eye-position screening conducted by SVS. SVS successfully measured 1217 children (99.8%). Regarding the right eye refraction, the spherical power was +0.70 ± 0.55 D (median, +0.75 D), and the cylindrical power was −0.67 ± 0.49 D (median, −0.50 D). The pupil diameter of the right eyes was 5.57 ± 0.79 (median, 5.60) mm. we could obtain a large number of basic data for 3-year- and 1-month-old Japanese children. However, refraction and pupil diameter of children were not normally distributed, so careful handling of children’s basic data on the eye is necessary.
Establishment of an indirect ELISA for detection of the novel antifibrotic peptide M10
M10 is a ten amino acid peptide generated from the intracellular cytoplasmic tail of the hepatocyte growth factor (HGF) receptor c-Met following cleavage by caspase-3. Recently we reported that M10 interacts with Smad2 and demonstrates antifibrotic properties in vitro and in vivo and can be advanced into a novel antifibrotic remedy. The current study was undertaken to develop an immunoassay to measure M10 concentration in biological specimens. An Indirect Enzyme-Linked Immunosorbent Assay (ELISA) for detection of M10 in biological fluids was developed using pharmaceutical grade synthetic M10 as a calibrator and commercially available anti-c-Met C12 antibody. M10 ELISA specifically detected in plasma M10, but not a scrambled peptide, following a single intraperitoneal administration of M10 (1mg/kg) to mice. The detection limit was 9.6 ng/ml, and the measuring limit was between 15 ng/ml and 200 ng/ml. The recovery limits of M10 were between 80% and 120%; intra-assay coefficient of variation was between 5.3% and 6.3%; inter-assay coefficient of variation was between 5.0% and 8.0% over the buffer concentration tested in the range from 15 ng /ml to 250 ng /ml. The peak of M10 concentration following a single intraperitoneal injection (1mg/kg) was achieved within 6 hours and declined to minimal levels by 48 hours. The experimentally obtained half-life for M10 was comparable to the theoretically predicted half-life for M10. We have established a highly sensitive ELISA to detect the antifibrotic peptide M10 in plasma samples, which should prove to be a novel tool to study the pharmacokinetics and efficacy of M10 in the treatment of fibroproliferative disorders.
Scanning SQUID microscope system for geological samples: system integration and initial evaluation
We have developed a high-resolution scanning superconducting quantum interference device (SQUID) microscope for imaging the magnetic field of geological samples at room temperature. In this paper, we provide details about the scanning SQUID microscope system, including the magnetically shielded box (MSB), the XYZ stage, data acquisition by the system, and initial evaluation of the system. The background noise in a two-layered PC permalloy MSB is approximately 40–50 pT. The long-term drift of the system is approximately ≥1 nT, which can be reduced by drift correction for each measurement line. The stroke of the XYZ stage is 100 mm × 100 mm with an accuracy of ~10 µm, which was confirmed by laser interferometry. A SQUID chip has a pick-up area of 200 μm × 200 μm with an inner hole of 30 μm × 30 μm. The sensitivity is 722.6 nT/V. The flux-locked loop has four gains, i.e., ×1, ×10, ×100, and ×500. An analog-to-digital converter allows analog voltage input in the range of about ±7.5 V in 0.6-mV steps. The maximum dynamic range is approximately ±5400 nT, and the minimum digitizable magnetic field is ~0.9 pT. The sensor-to-sample distance is measured with a precision line current, which gives the minimum of ~200 µm. Considering the size of pick-up coil, sensor-to-sample distance, and the accuracy of XYZ stage, spacial resolution of the system is ~200 µm. We developed the software used to measure the sensor-to-sample distance with line scan data, and the software to acquire data and control the XYZ stage for scanning. We also demonstrate the registration of the magnetic image relative to the optical image by using a pair of point sources placed on the corners of a sample holder outside of a thin section placed in the middle of the sample holder. Considering the minimum noise estimate of the current system, the theoretical detection limit of a single magnetic dipole is ~1 × 10 −14  Am 2 . The new instrument is a powerful tool that could be used in various applications in paleomagnetism such as ultrafine-scale magnetostratigraphy and single-crystal paleomagnetism. Graphical Abstract .