Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
310
result(s) for
"Nolan, Michael C."
Sort by:
Planetary Radar—State-of-the-Art Review
by
Hickson, Dylan
,
Rivera-Valentín, Edgard
,
Bhiravarasu, Sriram
in
20th century
,
21st century
,
Analysis
2023
Planetary radar observations have provided invaluable information on the solar system through both ground-based and space-based observations. In this overview article, we summarize how radar observations have contributed in planetary science, how the radar technology as a remote-sensing method for planetary exploration and the methods to interpret the radar data have advanced in the eight decades of increasing use, where the field stands in the early 2020s, and what are the future prospects of the ground-based facilities conducting planetary radar observations and the planned spacecraft missions equipped with radar instruments. The focus of the paper is on radar as a remote-sensing technique using radar instruments in spacecraft orbiting planetary objects and in Earth-based radio telescopes, whereas ground-penetrating radar systems on landers are mentioned only briefly. The key scientific developments are focused on the search for water ice in the subsurface of the Moon, which could be an invaluable in situ resource for crewed missions, dynamical and physical characterization of near-Earth asteroids, which is also crucial for effective planetary defense, and a better understanding of planetary geology.
Journal Article
Particle Size-Frequency Distributions of the OSIRIS-REx Candidate Sample Sites on Asteroid (101955) Bennu
by
Hoover, Rachael H.
,
Nolan, Michael C.
,
Susorney, Hannah C. M.
in
Apollo asteroids
,
Asteroid missions
,
Asteroids
2021
We manually mapped particles ranging in longest axis from 0.3 cm to 95 m on (101955) Bennu for the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission. This enabled the mission to identify candidate sample collection sites and shed light on the processes that have shaped the surface of this rubble-pile asteroid. Building on a global survey of particles, we used higher-resolution data from regional observations to calculate particle size-frequency distributions (PSFDs) and assess the viability of four candidate sites for sample collection (presence of unobstructed particles ≤ 2 cm). The four candidate sites have common characteristics: each is situated within a crater with a relative abundance of sampleable material. Their PSFDs, however, indicate that each site has experienced different geologic processing. The PSFD power-law slopes range from −3.0 ± 0.2 to −2.3 ± 0.1 across the four sites, based on images with a 0.01-m pixel scale. These values are consistent with, or shallower than, the global survey measurements. At one site, Osprey, the particle packing density appears to reach geometric saturation. We evaluate the uncertainty in these measurements and discuss their implications for other remotely sensed and mapped particles, and their importance to OSIRIS-REx sampling operations.
Journal Article
Self-sorted Oligophenylvinylene and Perylene Bisimide Hydrogels
by
Adams, Dave J.
,
Nolan, Michael C.
,
Mears, Laura L. E.
in
639/301/923/1027
,
639/301/923/3931
,
Drying
2017
We describe two component hydrogels with networks composed of self-sorted fibres. The component gelators are based on 1,4-distyrylbenzene (OPV3) and perylene bisimide (PBI) units. Self-sorted gels can be formed by a slow decrease in pH, which leads to sequential assembly. We demonstrate self-sorting by NMR, rheology and small angle X-ray scattering (SAXS). Photoconductive xerogels can be prepared by drying these gels. The wavelength response of the xerogel is different to that of the PBI alone.
Journal Article
Radar Imaging of Binary Near-Earth Asteroid (66391) 1999 KW4
by
Broschart, Stephen B
,
Benner, Lance A.M
,
Scheeres, Daniel J
in
Asteroids
,
Astronomy
,
bulk density
2006
High-resolution radar images reveal near-Earth asteroid (66391) 1999 KW4 to be a binary system. The ~1.5-kilometer-diameter primary (Alpha) is an unconsolidated gravitational aggregate with a spin period ~2.8 hours, bulk density ~2 grams per cubic centimeter, porosity ~50%, and an oblate shape dominated by an equatorial ridge at the object's potential-energy minimum. The ~0.5-kilometer secondary (Beta) is elongated and probably is denser than Alpha. Its average orbit about Alpha is circular with a radius ~2.5 kilometers and period ~17.4 hours, and its average rotation is synchronous with the long axis pointed toward Alpha, but librational departures from that orientation are evident. Exotic physical and dynamical properties may be common among near-Earth binaries.
Journal Article
Spin Rate of Asteroid (54509) 2000 PH5 Increasing Due to the YORP Effect
by
Benner, Lance A.M
,
Ostro, Steven J
,
Magri, Christopher
in
Acceleration
,
Asteroids
,
Asteroids (minor planets)
2007
Radar and optical observations reveal that the continuous increase in the spin rate of near-Earth asteroid (54509) 2000 PH5 can be attributed to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, a torque due to sunlight. The change in spin rate is in reasonable agreement with theoretical predictions for the YORP acceleration of a body with the radar-determined size, shape, and spin state of 2000 PH5. The detection of asteroid spin-up supports the YORP effect as an explanation for the anomalous distribution of spin rates for asteroids under 10 kilometers in diameter and as a binary formation mechanism.
Journal Article
Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon
2009
We use polarimetric radar observations to study the distribution, depth, and embedded rock abundance of nearside lunar pyroclastic deposits. Radar images were obtained for Mare Vaporum and the southern half of Mare Serenitatis; the imaged areas contain the large Rima Bode, Mare Vaporum, Sulpicius Gallus, and Taurus‐Littrow pyroclastic deposits. Potential pyroclastic deposits at Rima Hyginus crater, the Tacquet Formation, and a dome in Mare Vaporum are also included. Data were acquired at S band (12.6 cm wavelength) using Arecibo Observatory and the Green Bank Telescope in a bistatic configuration. The S band images have resolutions between 20 and 100 m/pixel. The pyroclastic deposits appear dark to the radar and have low circular polarization ratios at S band wavelengths because they are smooth, easily penetrable by radar waves, and generally contain few embedded blocks. Changes in circular polarization ratio (CPR) across some of the pyroclastic deposits show areas with increased rock abundance as well as deposits that are shallower. Radar backscatter and CPR maps are used to identify fine‐grained mantling deposits in cases where optical and near‐infrared data are ambiguous about the presence of pyroclastics. The Tacquet Formation in southern Serenitatis, areas near Hyginus crater, and a dome in Mare Vaporum have lower‐backscatter cross sections than would be expected for mare basalts of similar estimated titanium content. Combined with very low CPR values, this is strong evidence that these areas are covered in fine‐grained pyroclastic mantling material.
Journal Article
Direct Detection of the Yarkovsky Effect by Radar Ranging to Asteroid 6489 Golevka
by
Chamberlin, Alan B.
,
Nolan, Michael C.
,
Ostro, Steven J.
in
Asteroids
,
Asteroids (minor planets)
,
Astronomy
2003
Radar ranging from Arecibo, Puerto Rico, to the 0.5-kilometer near-Earth asteroid 6489 Golevka unambiguously reveals a small nongravitational acceleration caused by the anisotropic thermal emission of absorbed sunlight. The magnitude of this perturbation, known as the Yarkovsky effect, is a function of the asteroid's mass and surface thermal characteristics. Direct detection of the Yarkovsky effect on asteroids will help constrain their physical properties, such as bulk density, and refine their orbital paths. Based on the strength of the detected perturbation, we estimate the bulk density of Golevka to be$2.7_{-0.6}^{+0.4}$grams per cubic centimeter.
Journal Article
Analysis of Projection Effects in OSIRIS‐REx Spectral Mapping Methods: Recommended Protocols for Facet‐Based Mapping
2021
We searched for an optimized protocol for mapping observations from a point spectrometer onto a shape model composed of triangular facets, in the context of NASA's asteroid sample return mission, OSIRIS‐REx (Origins, Spectral Interpretation, Resource Identification, and Security‐Regolith Explorer). Our study was conducted before the spacecraft arrived at the mission target asteroid (101955) Bennu, and we used observational sequence plans of the OSIRIS‐REx Visible and InfraRed Spectrometer (OVIRS). We explored six methods of mapping data to shape model facets, using three spatial resolutions. We attempted to boost map fidelity by increasing the observational coverage of the surface. We find that increasing shape model resolution improves mapping quality. However, once the shape model's mean facet edge length is smaller than two‐fifths of the diameter of the instrument's field of view (FOV), the increase in quality tapers off. The six mapping methods can be broken into two categories: facets that (1) select or (2) combine (average) data from observations. The quality differences between similar averaging methods (clipped average, weighted average, etc.) are insignificant. Selecting the nearest observation to a facet best preserves an enclosed outcrop's shape and signal, but averaging spots are more conservative against errors in photometric modeling. A completely enclosed outcrop border expands into the surrounding region by 0.8–1.5 radii of the instrument's FOV. Regions smaller than the instrument's FOV are present in resulting maps; however, their signal strength is reduced as a function of their size relative to the instrument FOV. Key Points Spectral map quality is controlled by shape model facet size, boresight spot size, and method of assigning spot data to facets Shape models with facet edges smaller than 2/5 the boresight spot diameter cease to improve map fidelity Data selection algorithms perform better than data combination methods for mapping distinct outcrops
Journal Article
Radar Observations of Asteroid 216 Kleopatra
by
Nolan, Michael C.
,
Ostro, Steven J.
,
Magri, Christopher
in
Asteroids
,
Astronomical objects
,
Astronomy
2000
Radar observations of the main-belt, M-class asteroid 216 Kleopatra reveal a dumbbell-shaped object with overall dimensions of 217 kilometers by 94 kilometers by 81 kilometers (±25%). The asteroid's surface properties are consistent with a regolith having a metallic composition and a porosity comparable to that of lunar soil. Kleopatra's shape is probably the outcome of an exotic sequence of collisional events, and much of its interior may have an unconsolidated rubble-pile structure.
Journal Article
Assessing the Sampleability of Bennu’s Surface for the OSIRIS-REx Asteroid Sample Return Mission
by
Stewart, Stephanie
,
Wolner, Catherine W.V.
,
Enos, Heather L
in
Aerospace Technology and Astronautics
,
Algorithms
,
Apollo asteroids
2022
NASA’s first asteroid sample return mission, OSIRIS-REx, collected a sample from the surface of near-Earth asteroid Bennu in October 2020 and will deliver it to Earth in September 2023. Selecting a sample collection site on Bennu’s surface was challenging due to the surprising lack of large ponded deposits of regolith particles exclusively fine enough (≤ 2 cm diameter) to be ingested by the spacecraft’s Touch-and-Go Sample Acquisition Mechanism (TAGSAM). Here we describe the Sampleability Map of Bennu, which was constructed to aid in the selection of candidate sampling sites and to estimate the probability of collecting sufficient sample. “Sampleability” is a numeric score that expresses the compatibility of a given area’s surface properties with the sampling mechanism. The algorithm that determines sampleability is a best fit functional form to an extensive suite of laboratory testing outcomes tracking the TAGSAM performance as a function of four observable properties of the target asteroid. The algorithm and testing were designed to measure and subsequently predict TAGSAM collection amounts as a function of the minimum particle size, maximum particle size, particle size frequency distribution, and the tilt of the TAGSAM head off the surface. The sampleability algorithm operated at two general scales, consistent with the resolution and coverage of data collected during the mission. The first scale was global and evaluated nearly the full surface. Due to Bennu’s unexpected boulder coverage and lack of ponded
regolith deposits, the global sampleability efforts relied heavily on additional strategies to find and characterize regions of interest based on quantifying and avoiding areas heavily covered by material too large to be collected. The second scale was site-specific and used higher-resolution data to predict collected mass at a given contact location. The rigorous sampleability assessments gave the mission confidence to select the best possible sample collection site and directly enabled successful collection of hundreds of grams of material.
Journal Article