Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
556
result(s) for
"North, William"
Sort by:
Cancer and the Vasopressin Gene: Radioimmunoassay Values and Commentary on Copeptin as a Plasma Marker
2023
Vasopressin gene expression has been demonstrated to be a common feature of all small-cell lung cancer (SCLC) and breast cancer. Provasopressin (ProVP) is a component of the cancer cell membrane and a likely target for treatment. However, a measurable fraction of this cancer provasopressin is also normally processed and products are released into the circulation. Vasopressin (VP) and vasopressin-associated human neurophysin (VP-HNP), two of three products of processing, were earlier shown to be reliable plasma markers for determining the presence of SCLC and monitoring response to treatment.
In this study, copeptin, the third product of provasopressin processing, was preliminarily evaluated as a plasma marker for SCLC or breast cancer using radioimmunoassay (RIA). Antibodies directed against the 18 residue C-terminal peptide fragment of copeptin were used to avoid interference from the large-carbohydrate component of this endogenous glycopeptide.
The levels of copeptin in 8 male and 6 female patients with SCLC before treatment ranged from 16 to 319 pmol/L, and these levels were elevated (>2.5 times) in 10 of 14 cases (70%) when compared with healthy volunteers (normal mean, 18 ± 6 pmol/L). Volunteer values for males were smaller than for females (15± 4 pmol/L and 20± 9 pmol/L), but numbers were small. Patients with breast cancer had plasma levels ranging from 12 to 68 pmol/L, with only three of the six elevated.
While cancer patients displayed a wide range of plasma copeptin levels over 70% with SCLC and 50% with breast cancer had clearly elevated levels. This finding indicates that for such patients, plasma copeptin, like plasma VP and VP-HNP, could be used to detect disease. The control values found for healthy volunteers using our RIA were in a range predictable from established normal plasma levels of both VP and VP-HNP.
Journal Article
Functional Movement Screen: Pain versus composite score and injury risk
by
Alemany, Joseph A.
,
Anderson, Morgan K.
,
North, William J.
in
Adult
,
Armed forces
,
Conflicts of interest
2017
The Functional Movement Screen (FMS™) has been used as a screening tool to determine musculoskeletal injury risk using composite scores based on movement quality and/or pain. However, no direct comparisons between movement quality and pain have been quantified.
Retrospective injury data analysis.
Male Soldiers (n=2154, 25.0±1.3years; 26.2±.7kg/m2) completed the FMS (scored from 0 points (pain) to 3 points (no pain and perfect movement quality)) with injury data over the following six months. The FMS is seven movements. Injury data were collected six months after FMS completion. Sensitivity, specificity, receiver operator characteristics and positive and negative predictive values were calculated for pain occurrence and low (≤14 points) composite score. Risk, risk ratios (RR) and 95% confidence intervals were calculated for injury risk.
Pain was associated with slightly higher injury risk (RR=1.62) than a composite score of ≤14 points (RR=1.58). When comparing injury risk between those who scored a 1, 2 or 3 on each individual movement, no differences were found (except deep squat). However, Soldiers who experienced pain on any movement had a greater injury risk than those who scored 3 points for that movement (p<0.05). A progressive increase in the relative risk occurred as the number of movements in which pain occurrence increased, so did injury risk (p<0.01).
Pain occurrence may be a stronger indicator of injury risk than a low composite score and provides a simpler method of evaluating injury risk compared to the full FMS.
Journal Article
NMDA receptors are important regulators of pancreatic cancer and are potential targets for treatment
2017
Pancreatic cancer, particularly adenocarcinoma of the pancreas, is a common disease with a poor prognosis. In this study, the importance of N-methyl-D-aspartate (NMDA) receptors for the growth and survival of pancreatic cancer was investigated. Immunohistochemistry performed with antibodies against GluN1 and GluN2B revealed that all invasive adenocarcinoma and neuroendocrine pancreatic tumors likely express these two NMDA receptor proteins. These proteins were found to be membrane components of pancreatic cancer cell lines, and both channel-blocker antagonist and GluN2B antagonist significantly reduced cell viability in vitro. Both types of antagonists caused an internalization of the receptors. Dizocilpine maleate (MK-801) and ifenprodil hemitartrate both significantly inhibited the growth of pancreatic tumor xenografts in nu/nu mice. These findings predict that, as for other solid tumors investigated by us, pancreatic cancer could be successfully treated, alone or in combination, with NMDA receptor antagonists or other receptor-inhibiting blocking agents.
Journal Article
NMDA receptors are expressed in human ovarian cancer tissues and human ovarian cancer cell lines
2015
We have earlier demonstrated that breast cancer and small-cell lung cancer express functional NMDA receptors that can be targeted to promote cancer cell death. Human ovarian cancer tissues and human ovarian cancer cell lines (SKOV3, A2008, and A2780) have now been shown to also express NMDA-receptor subunit 1 (GluN1) and subunit 2B (GluN2B). Seventeen ovarian cancers in two arrays were screened by immunohistochemistry using polyclonal antibodies that recognize an extracellular moiety on GluN1 and on GluN2B. These specimens comprised malignant tissue with pathology diagnoses of serous papillary cystadenocarcinoma, endometrioid adenocarcinoma, and clear-cell carcinoma. Additionally, archival tissues defined as ovarian adenocarcinoma from ten patients treated at this institute were also evaluated. All of the cancerous tissues demonstrated positive staining patterns with the NMDA-receptor antibodies, while no staining was found for tumor-adjacent normal tissues or sections of normal ovarian tissue. Human ovarian adenocarcinoma cell lines (A2008, A2780, SKOV3) were demonstrated to express GluN1 by Western blotting, but displayed different levels of expression. Through immunocytochemistry utilizing GluN1 antibodies and imaging using a confocal microscope, we were able to demonstrate that GluN1 protein is expressed on the surface of these cells. In addition to these findings, GluN2B protein was demonstrated to be expressed using polyclonal antibodies against this protein. Treatment of all ovarian cell lines with antibodies against GluN1 was found to result in decreased cell viability (P<0.001), with decreases to 10%-25% that of untreated cells. Treatment of control HEK293 cells with various dilutions of GluN1 antibodies had no effect on cell viability. The GluN1 antagonist MK-801 (dizocilpine maleate) and the GluN2B antagonist ifenprodil, like antibodies, dramatically decreased the viability of A2780 ovarian tumor cells (P<0.01). Treatment of A2780 tumor xenografts with ifenprodil (2.5 mg/kg body weight/day) significantly reduced tumor growth in nu/nu mice. Our findings suggest that both GluN1 and GluN2B proteins as membrane components could be readily available targets for the treatment of most ovarian cancers.
Journal Article
NMDA receptors are expressed by small-cell lung cancer and are potential targets for effective treatment
2010
We previously showed that functional N-methyl-D-aspartate (NMDA) receptors are expressed by human neuroblastoma cells. In this study we demonstrate functional NMDAR1 and NMDAR2 receptors are expressed by small-cell lung cancer (SCLC) classical cell lines NCI H146, NCI H345, and DMS 53, by variant cell line NCI H82, and by most SCLC tumors, and that these receptors are important for the growth of human SCLC tumor xenografts in mice. Reverse transcription-polymerase chain reaction demonstrated mRNA for both receptors, with sequences identical to those for human mRNAs, are expressed in all four cell lines, and these generated proteins of the expected sizes 120 and 170 kDa. Cell viability tests showed cell growth was significantly (P < 0.0001) impaired by NMDAR1 antagonists MK-801 and memantine. Ifenprodil and Ro25-6981, NMDAR2B antagonists at the polyamine site, also significantly (P < 0.001) inhibited the growth/survival of these cells. Alternatively, the glycine-binding antagonist, L701, 324, increased viability to 140% and 120% in NCI H345 and NCI H82 cells after 48 hours of incubation. Immunohistochemistry of SCLC tumors with our polyclonal antibodies gave specific positive staining for the NMDAR1 receptor in 8 of 10 tissues examined. Small amounts of these same antibodies significantly reduced the growth of NCI-H345 cells up to 25% (P < 0.001). When NCI H345 cells were grown as tumor xenografts in mice, the growth of these tumors was reduced by 60% (P < 0.001) by treatments with MK-801 over five days. All of these data point to active NMDAR receptors possibly having an important influence on SCLC growth and survival.
Journal Article
Small-cell lung cancer growth inhibition: synergism between NMDA receptor blockade and chemotherapy
by
North, William G.
,
Liu, Fuli
,
Dragnev, Konstantin H
in
Alzheimer's disease
,
Cancer therapies
,
Chemotherapy
2019
Small-cell lung cancer (SCLC) has a poor prognosis since there is currently no effective therapy for commonly recurring disease. In our previous study, both primary and recurrent human tumors have been shown to express functional
-methyl-D-aspartate (NMDA) receptors, and blockade of these receptors with GluN1 and GluN2B antagonists decreased tumor cell viability in vitro, and growth of tumor xenografts in nu/nu mice.
In this study, we examine the influence of the GluN2B antagonist ifenprodil and the channel-blocker antagonist memantine, on cell viability and growth of tumor xenografts of recurrent SCLC (rSCLC) in mice.
Both antagonists significantly reduced cell viability and levels of components of the ERK1/2 pathway, increased apoptosis, and at very safe levels significantly reduced the growth of tumors in mice. Each antagonist and topotecan had additive effects to reduce cell viability with significant synergy demonstrated for the case of memantine. More significantly, combination treatments of xenografts in mice with ifenprodil and the chemotherapeutic agent topotecan produced clear additive effects that completely stopped tumor growth. Moreover, the ifenprodil and topotecan combination showed excellent supra-addition or synergy of inhibition for tumors ≤300 mm in size (
=4.7E-4). Combination treatment of memantine with topotecan also showed clear addition but, unlike ifenprodil, no synergy for the doses chosen.
Since topotecan is a drug of choice for treatment of rSCLC, our findings suggest that combining this agent with NMDA receptor blockade using the GluN2B antagonist, ifenprodil, will significantly improve patient outcomes.
Journal Article
Breast cancer expresses functional NMDA receptors
by
Gao, Guohong
,
Memoli, Vincent A
,
Lynch, Launa
in
Animals
,
antagonists & inhibitors
,
Antibodies
2010
We demonstrate here that functional NMDAR1 and NMDAR2 receptors are expressed by Mcf-7 and SKBR3 breast cancer cell lines, and possibly by most or all high-grade breast tumors, and that these receptors are important for the growth of human breast cancer xenografts in mice. RT-PCR demonstrated mRNA for both NMDAR1 and NMDAR2 receptors are expressed in both Mcf-7 and SKBR3 cell lines, and these messages likely have sequences identical to those reported for human mRNAs. Proteins of the expected respective sizes 120 and 170 kD are generated from these mRNAs by the tumor cells. Cell growth was found to be significantly (P < 0.0001) impaired down to 10% of normal growth by the irreversible NMDAR1 antagonists MK-801 and memantine with IC 50s ranging from 600 to >800 µM and from 200 to 300 µM for the two lines. Paradoxically, memantine with a lower binding affinity had the greater influence of the two inhibitors on cell viability. Immunohistochemical examination of high-grade invasive ductal and lobular breast cancer with our polyclonal antibodies against a peptide (-Met-Ser-Ile-Tyr-Ser-Asp-Lys-Ser-Ile-His-) in the extracellular domain of the NMDAR1 receptor gave specific positive staining for the receptor in all 10 cases examined. Positive staining was chiefly concentrated at the membranes of these tumor tissues. No staining with these antibodies was found for normal breast and kidney tissues. When Mcf-7 cells were grown as tumor xenografts in nu/nu mice, the growth of these tumors was completely arrested by daily treatments with MK-801 over 5 days. All of these data point to active NMDAR receptors being expressed by most breast cancers, and having an important influence on their survival.
Journal Article
The Haskins Society Journal
2017
Fruits of the most recent research on the worlds of the eleventh and twelfth centuries.
Provasopressin expression by breast cancer cells: implications for growth and novel treatment strategies
by
Akerman, Bonnie L.
,
Péqueux, Christel
,
Keegan, Brendan P.
in
1-Methyl-3-isobutylxanthine - pharmacology
,
Anti-Inflammatory Agents - pharmacology
,
Antibodies, Monoclonal - immunology
2006
The arginine vasopressin (AVP) gene is expressed in certain cancers such as breast cancer, where it is believed to act as an autocrine growth factor. However, little is known about the regulation of the AVP protein precursor (proAVP) or AVP-mediated signaling in breast cancer and this study was undertaken to address some of the basic issues. The cultured cell lines examined (Mcf7, Skbr3, BT474, ZR75, Mcf10a) and human breast cancer tissue extract were found to express proAVP mRNA. Western analysis revealed multiple forms of proAVP protein were present in cell lysates, corresponding to those detected in human hypothalamus extracts. Monoclonal antibodies directed against different regions of proAVP bound to intact live Mcf7 and Skbr3 cells. Dexamethasone increased the amount of proAVP-associated glycopeptide (VAG) secreted by Skbr3 cells and a combination of dexamethasone, IBMX and 8br-cAMP increased cellular levels of VAG. Exogenous AVP (1, 10, and 100 nM) elevated phospho-ERK1/2 levels, and increased cell proliferation was observed in the presence of 10 nM AVP. Concurrent treatment with the V1a receptor antagonist SR49059 reduced the effects of AVP on proliferation in Mcf7 cells, and abolished it in Skbr3 cells. Results here show that proAVP components are found at the surface of Skbr3 and Mcf7 cells and are also secreted from these cells. In addition, they show that AVP promotes cancer cell growth, apparently through a V1-type receptor-mediated pathway and subsequent ERK1/2 activation. Thus, strategies for targeting proAVP should be examined for their effectiveness in diagnosing and treating breast cancer.
Journal Article