Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
80 result(s) for "Notaro, Michael"
Sort by:
Dynamically Downscaled Projections of Lake-Effect Snow in the Great Lakes Basin
Projected changes in lake-effect snowfall by the mid- and late twenty-first century are explored for the Laurentian Great Lakes basin. Simulations from two state-of-the-art global climate models within phase 5 of the Coupled Model Intercomparison Project (CMIP5) are dynamically downscaled according to the representative concentration pathway 8.5 (RCP8.5). The downscaling is performed using the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 4 (RegCM4) with 25-km grid spacing, interactively coupled to a one-dimensional lake model. Both downscaled models produce atmospheric warming and increased cold-season precipitation. The Great Lakes’ ice cover is projected to dramatically decline and, by the end of the century, become confined to the northern shallow lakeshores during mid-to-late winter. Projected reductions in ice cover and greater dynamically induced wind fetch lead to enhanced lake evaporation and resulting total lake-effect precipitation, although with increased rainfall at the expense of snowfall. A general reduction in the frequency of heavy lake-effect snowstorms is simulated during the twenty-first century, except with increases around Lake Superior by the midcentury when local air temperatures still remain low enough for wintertime precipitation to largely fall in the form of snow. Despite the significant progress made here in elucidating the potential future changes in lake-effect snowstorms across the Great Lakes basin, further research is still needed to downscale a larger ensemble of CMIP5 model simulations, ideally using a higher-resolution, nonhydrostatic regional climate model coupled to a three-dimensional lake model.
Dynamical Downscaling–Based Projections of Great Lakes Water Levels
Projections of regional climate, net basin supply (NBS), and water levels are developed for the mid- and late twenty-first century across the Laurentian Great Lakes basin. Two state-of-the-art global climate models (GCMs) are dynamically downscaled using a regional climate model (RCM) interactively coupled to a one-dimensional lake model, and then a hydrologic routing model is forced with time series of perturbed NBS. The dynamical downscaling and coupling with a lake model to represent the Great Lakes create added value beyond the parent GCM in terms of simulated seasonal cycles of temperature, precipitation, and surface fluxes. However, limitations related to this rudimentary treatment of the Great Lakes result in warm summer biases in lake temperatures, excessive ice cover, and an abnormally early peak in lake evaporation. While the downscaling of both GCMs led to consistent projections of increases in annual air temperature, precipitation, and all NBS components (overlake precipitation, basinwide runoff, and lake evaporation), the resulting projected water level trends are opposite in sign. Clearly, it is not sufficient to correctly simulate the signs of the projected change in each NBS component; one must also account for their relative magnitudes. The potential risk of more frequent episodes of lake levels below the low water datum, a critical shipping threshold, is explored.
Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism
Classic, model-based theory of land-atmosphere interactions across the Sahel promote positive vegetation-rainfall feedbacks dominated by surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback nor its underlying albedo mechanism has been convincingly demonstrated using observational data. Here, we present observational evidence for the region’s proposed positive vegetation-rainfall feedback on the seasonal to interannual time scale, and find that it is associated with a moisture recycling mechanism, rather than the classic albedo-based mechanism. Positive anomalies of remotely sensed vegetation greenness across the Sahel during the late and post-monsoon periods favor enhanced evapotranspiration, precipitable water, convective activity and rainfall, indicative of amplified moisture recycling. The identified modest low-level cooling and anomalous atmospheric subsidence in response to positive vegetation greenness anomalies are counter to the responses expected through the classic vegetation-albedo feedback mechanism. The observational analysis further reveals enhanced dust emissions in response to diminished Sahel vegetation growth, potentially contributing to the positive vegetation-rainfall feedback. Vegetation-rainfall feedbacks in the Sahel are thought to be positive, but the precise mechanisms for this are unclear. Here the authors analyse observations to show that a moisture recycling mechanism drives this feedback.
Influence of the Laurentian Great Lakes on Regional Climate
The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model, version 4. The Great Lakes dampen the variability in near-surface air temperature across the surrounding region while reducing the amplitude of the diurnal cycle and annual cycle of air temperature. The impacts of the Great Lakes on the regional surface energy budget include an increase (decrease) in turbulent fluxes during the cold (warm) season and an increase in surface downward shortwave radiation flux during summer due to diminished atmospheric moisture and convective cloud amount. Changes in the hydrologic budget due to the presence of the Great Lakes include increases in evaporation and precipitation during October–March and decreases during May–August, along with springtime reductions in snowmelt-related runoff. Circulation responses consist of a regionwide decrease in sea level pressure in autumn–winter and an increase in summer, with enhanced ascent and descent in the two seasons, respectively. The most pronounced simulated impact of the Great Lakes on synoptic systems traversing the basin is a weakening of cold-season anticyclones.
Spatio-Temporal Variability in Remotely Sensed Vegetation Greenness Across Yellowstone National Park
The study’s objective was to quantify the responses of vegetation greenness and productivity to climate variability and change across complex topographic, climatic, and ecological gradients in Yellowstone National Park through the use of remotely sensed data. The climate change signal in Yellowstone was pronounced, including substantial warming, an abrupt decline in snowpack, and more frequent droughts. While phenological studies are increasing in Yellowstone, the near absence of long-term and continuous ground-based phenological measurements motivated the study’s application of remotely sensed data to aid in identifying ecological vulnerabilities and guide resource management in light of on ongoing environmental change. Correlation, time-series, and empirical orthogonal function analyses for 1982–2015 focused on Daymet data and vegetation indices (VIs) from the Advanced Very High-Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). The study’s key questions address unique time scales. First, what are the dominant meteorological drivers of variability in vegetation greenness on seasonal to interannual time scales? Key results include: (1) Green-up is the most elevation- and climate-sensitive phenological stage, with La Niña-induced cool, wet conditions or an anomalously deep snowpack delaying the green-up wave. (2) Drought measures were the dominant contributors towards phenological variability, as winter–spring drought corresponded to enhanced April–June greening and spring–summer drought corresponded to reduced August–September greening. Second, how have patterns of productivity changed in response to climate change and disturbances? Key results include: (1) The park predominantly exhibited positive productivity trends, associated with lodgepole pine re-establishment and growth following the 1988 fires. (2) Landscapes which were undisturbed by the 1988 fires showed no apparent sign of warming-induced greening. This study motivates a systematic investigation of remote-sensing data across western parks to identify ecological vulnerabilities and support the development of climate change vulnerability assessments and adaptation strategies.
Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic-envelope approach
This study focuses on potential impacts of 21st century climate change on vegetation in the Southwest United States, based on debiased and interpolated climate projections from 17 global climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Among these models a warming trend is universal, but projected changes in precipitation vary in sign and magnitude. Two independent methods are applied: a dynamic global vegetation model to assess changes in plant functional types and bioclimatic envelope modeling to assess changes in individual tree and shrub species and biodiversity. The former approach investigates broad responses of plant functional types to climate change, while considering competition, disturbances, and carbon fertilization, while the latter approach focuses on the response of individual plant species, and net biodiversity, to climate change. The dynamic model simulates a region-wide reduction in vegetation cover during the 21st century, with a partial replacement of evergreen trees with grasses in the mountains of Colorado and Utah, except at the highest elevations, where tree cover increases. Across southern Arizona, central New Mexico, and eastern Colorado, grass cover declines, in some cases abruptly. Due to the prevalent warming trend among all 17 climate models, vegetation cover declines in the 21st century, with the greatest vegetation losses associated with models that project a drying trend. The inclusion of the carbon fertilization effect largely ameliorates the projected vegetation loss. Based on bioclimatic envelope modeling for the 21st century, the number of tree and shrub species that are expected to experience robust declines in range likely outweighs the number of species that are expected to expand in range. Dramatic shifts in plant species richness are projected, with declines in the high-elevation evergreen forests, increases in the eastern New Mexico prairies, and a northward shift of the Sonoran Desert biodiversity maximum.
Disproportionate magnitude of climate change in United States national parks
Anthropogenic climate change is altering ecological and human systems globally, including in United States (US) national parks, which conserve unique biodiversity and resources. Yet, the magnitude and spatial patterns of climate change across all the parks have been unknown. Here, in the first spatial analysis of historical and projected temperature and precipitation across all 417 US national parks, we show that climate change exposes the national park area more than the US as a whole. This occurs because extensive parts of the national park area are in the Arctic, at high elevations, or in the arid southwestern US. Between 1895 and 2010, mean annual temperature of the national park area increased 1.0 °C 0.2 °C century−1 (mean standard error), double the US rate. Temperature has increased most in Alaska and its extensive national parks. Annual precipitation of the national park area declined significantly on 12% of national park area, compared to 3% of the US. Higher temperatures due to climate change have coincided with low precipitation in the southwestern US, intensifying droughts in the region. Physical and ecological changes have been detected and attributed mainly to anthropogenic climate change in areas of significant temperature increases in US national parks. From 2000 to 2100, under the highest emissions scenario (representative concentration pathway [RCP] 8.5), park temperatures would increase 3 °C-9 °C, with climate velocities outpacing dispersal capabilities of many plant and animal species. Even under the scenario of reduced emissions (RCP2.6), temperature increases could exceed 2 °C for 58% of national park area, compared to 22% of the US. Nevertheless, greenhouse gas emissions reductions could reduce projected temperature increases in national parks by one-half to two-thirds.
Quantifying the drivers and predictability of seasonal changes in African fire
Africa contains some of the most vulnerable ecosystems to fires. Successful seasonal prediction of fire activity over these fire-prone regions remains a challenge and relies heavily on in-depth understanding of various driving mechanisms underlying fire evolution. Here, we assess the seasonal environmental drivers and predictability of African fire using the analytical framework of Stepwise Generalized Equilibrium Feedback Assessment (SGEFA) and machine learning techniques (MLTs). The impacts of sea-surface temperature, soil moisture, and leaf area index are quantified and found to dominate the fire seasonal variability by regulating regional burning condition and fuel supply. Compared with previously-identified atmospheric and socioeconomic predictors, these slowly evolving oceanic and terrestrial predictors are further identified to determine the seasonal predictability of fire activity in Africa. Our combined SGEFA-MLT approach achieves skillful prediction of African fire one month in advance and can be generalized to provide seasonal estimates of regional and global fire risk. Fire is an important component of many African ecosystems, but prediction of fire activity is challenging. Here, the authors use a statistical framework to assess the seasonal environmental drivers of African fire, which allow for a better prediction of fire activity.
Projected Influences of Changes in Weather Severity on Autumn-Winter Distributions of Dabbling Ducks in the Mississippi and Atlantic Flyways during the Twenty-First Century
Projected changes in the relative abundance and timing of autumn-winter migration are assessed for seven dabbling duck species across the Mississippi and Atlantic Flyways for the mid- and late 21st century. Species-specific observed relationships are established between cumulative weather severity in autumn-winter and duck population rate of change. Dynamically downscaled projections of weather severity are developed using a high-resolution regional climate model, interactively coupled to a one-dimensional lake model to represent the Great Lakes and associated lake-effect snowfall. Based on the observed relationships and downscaled climate projections of rising air temperatures and reduced snow cover, delayed autumn-winter migration is expected for all species, with the least delays for the Northern Pintail and the greatest delays for the Mallard. Indeed, the Mallard, the most common and widespread duck in North America, may overwinter in the Great Lakes region by the late 21st century. This highlights the importance of protecting and restoring wetlands across the mid-latitudes of North America, including the Great Lakes Basin, because dabbling ducks are likely to spend more time there, which would impact existing wetlands through increased foraging pressure. Furthermore, inconsistency in the timing and intensity of the traditional autumn-winter migration of dabbling ducks in the Mississippi and Atlantic Flyways could have social and economic consequences to communities to the south, where hunting and birdwatching would be affected.
Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden–Julian Oscillation
A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land–atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November–April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO’s pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.