Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
58 result(s) for "Nothias Louis Felix"
Sort by:
Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra
Metabolomics using nontargeted tandem mass spectrometry can detect thousands of molecules in a biological sample. However, structural molecule annotation is limited to structures present in libraries or databases, restricting analysis and interpretation of experimental data. Here we describe CANOPUS (class assignment and ontology prediction using mass spectrometry), a computational tool for systematic compound class annotation. CANOPUS uses a deep neural network to predict 2,497 compound classes from fragmentation spectra, including all biologically relevant classes. CANOPUS explicitly targets compounds for which neither spectral nor structural reference data are available and predicts classes lacking tandem mass spectrometry training data. In evaluation using reference data, CANOPUS reached very high prediction performance (average accuracy of 99.7% in cross-validation) and outperformed four baseline methods. We demonstrate the broad utility of CANOPUS by investigating the effect of microbial colonization in the mouse digestive system, through analysis of the chemodiversity of different Euphorbia plants and regarding the discovery of a marine natural product, revealing biological insights at the compound class level. Unknown metabolites are classified from mass spectrometry data.
Significance estimation for large scale metabolomics annotations by spectral matching
The annotation of small molecules in untargeted mass spectrometry relies on the matching of fragment spectra to reference library spectra. While various spectrum-spectrum match scores exist, the field lacks statistical methods for estimating the false discovery rates (FDR) of these annotations. We present empirical Bayes and target-decoy based methods to estimate the false discovery rate (FDR) for 70 public metabolomics data sets. We show that the spectral matching settings need to be adjusted for each project. By adjusting the scoring parameters and thresholds, the number of annotations rose, on average, by +139% (ranging from −92 up to +5705%) when compared with a default parameter set available at GNPS. The FDR estimation methods presented will enable a user to assess the scoring criteria for large scale analysis of mass spectrometry based metabolomics data that has been essential in the advancement of proteomics, transcriptomics, and genomics science. Matching fragment spectra to reference library spectra is an important procedure for annotating small molecules in untargeted mass spectrometry based metabolomics studies. Here, the authors develop strategies to estimate false discovery rates (FDR) by empirical Bayes and target-decoy based methods which enable a user to define the scoring criteria for spectral matching.
Dereplication of microbial metabolites through database search of mass spectra
Natural products have traditionally been rich sources for drug discovery. In order to clear the road toward the discovery of unknown natural products, biologists need dereplication strategies that identify known ones. Here we report DEREPLICATOR+, an algorithm that improves on the previous approaches for identifying peptidic natural products, and extends them for identification of polyketides, terpenes, benzenoids, alkaloids, flavonoids, and other classes of natural products. We show that DEREPLICATOR+ can search all spectra in the recently launched Global Natural Products Social molecular network and identify an order of magnitude more natural products than previous dereplication efforts. We further demonstrate that DEREPLICATOR+ enables cross-validation of genome-mining and peptidogenomics/glycogenomics results. New natural products can be identified via mass spectrometry by excluding all known ones from the analysis, a process called dereplication. Here, the authors extend a previously published dereplication algorithm to different classes of secondary metabolites.
Propagating annotations of molecular networks using in silico fragmentation
The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.
Dereplication of peptidic natural products through database search of mass spectra
Aggregated mass spectral data by consortia such as the Global Natural Products Social (GNPS) molecular networking infrastructure enable natural product discovery. DEREPLICATOR, validated on peptidic natural products, is a computational tool to identify known metabolites in complex samples. Peptidic natural products (PNPs) are widely used compounds that include many antibiotics and a variety of other bioactive peptides. Although recent breakthroughs in PNP discovery raised the challenge of developing new algorithms for their analysis, identification of PNPs via database search of tandem mass spectra remains an open problem. To address this problem, natural product researchers use dereplication strategies that identify known PNPs and lead to the discovery of new ones, even in cases when the reference spectra are not present in existing spectral libraries. DEREPLICATOR is a new dereplication algorithm that enables high-throughput PNP identification and that is compatible with large-scale mass-spectrometry-based screening platforms for natural product discovery. After searching nearly one hundred million tandem mass spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure, DEREPLICATOR identified an order of magnitude more PNPs (and their new variants) than any previous dereplication efforts.
Reproducible mass spectrometry data processing and compound annotation in MZmine 3
Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis. MZmine is an open-source software for the processing of raw spectral data generated by different MS platforms. Examples include liquid chromatography–MS, gas chromatography–MS and MS–imaging. These data might typically be associated with various applications including metabolomics and lipidomics. Moreover, the third version of the software, described herein, supports the processing of ion mobility spectrometry (IMS) data. The present protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by different instrumental setups: liquid chromatography–(IMS–)MS, gas chromatography–MS and (IMS–)MS imaging. For training purposes, example datasets are provided together with configuration batch files (i.e., list of processing steps and parameters) to allow new users to easily replicate the described workflows. Depending on the number of data files and available computing resources, we anticipate this to take between 2 and 24 h for new MZmine users and nonexperts. Within each procedure, we provide a detailed description for all processing parameters together with instructions/recommendations for their optimization. The main generated outputs are represented by aligned feature tables and fragmentation spectra lists that can be used by other third-party tools for further downstream analysis. Key points MZmine is a program designed to process data from untargeted mass spectrometry (MS) experiments acquired in data-dependent acquisition mode; specifically, collision-induced dissociation and higher-energy collisional dissociation. This protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by instrumental setups: liquid chromatography–(ion mobility spectrometry–)MS, gas chromatography–MS and (ion mobility spectrometry–)MS imaging. Untargeted mass spectrometry (MS) produces complex, multidimensional data. The MZmine open-source project enables processing of spectral data from various MS platforms, e.g., liquid chromatography–MS, gas chromatography–MS, MS–imaging and ion mobility spectrometry–MS, and is specialized for metabolomics.
MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools
Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking and MS2LDA emerged as molecular mining tools that find molecular families and substructures in mass spectrometry fragmentation data. Moreover, in silico annotation tools obtain and rank candidate molecules for fragmentation spectra. Ideally, all structural information obtained and inferred from these computational tools could be combined to increase the resulting chemical insight one can obtain from a data set. However, integration is currently hampered as each tool has its own output format and efficient matching of data across these tools is lacking. Here, we introduce MolNetEnhancer, a workflow that combines the outputs from molecular networking, MS2LDA, in silico annotation tools (such as Network Annotation Propagation or DEREPLICATOR), and the automated chemical classification through ClassyFire to provide a more comprehensive chemical overview of metabolomics data whilst at the same time illuminating structural details for each fragmentation spectrum. We present examples from four plant and bacterial case studies and show how MolNetEnhancer enables the chemical annotation, visualization, and discovery of the subtle substructural diversity within molecular families. We conclude that MolNetEnhancer is a useful tool that greatly assists the metabolomics researcher in deciphering the metabolome through combination of multiple independent in silico pipelines.
3D molecular cartography using LC-MS facilitated by Optimus and 'ili software
Our skin, our belongings, the world surrounding us, and the environment we live in are covered with molecular traces. Detecting and characterizing these molecular traces is necessary to understand the environmental impact on human health and disease, and to decipher complex molecular interactions between humans and other species, particularly microbiota. We recently introduced 3D molecular cartography for mapping small organic molecules (including metabolites, lipids, and environmental molecules) found on various surfaces, including the human body. Here, we provide a protocol and open-source software for 3D molecular cartography. The protocol includes step-by-step procedures for sample collection and processing, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, quality control (QC), molecular identification using MS/MS, data processing, and visualization with 3D models of the sampled environment. The LC-MS method was optimized for a broad range of small organic molecules. We enable scientists to reproduce our previously obtained results, and illustrate the broad utility of our approach with molecular maps of a rosemary plant and an ATM keypad after a PIN code was entered. To promote reproducibility, we introduce cartographical snapshots: files that describe a particular map and visualization settings, and that can be shared and loaded to reproduce the visualization. The protocol enables molecular cartography to be performed in any mass spectrometry laboratory and, in principle, for any spatially mapped data. We anticipate applications, in particular, in medicine, ecology, agriculture, biotechnology, and forensics. The protocol takes 78 h for a molecular map of 100 spots, excluding the reagent setup.
Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts
Background Sponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species. Results Several metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3′-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms. Conclusions This study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts. 1ZKRtxnVdRBPc6hY7com8S Video abstract
Database-independent molecular formula annotation using Gibbs sampling through ZODIAC
The confident high-throughput identification of small molecules is one of the most challenging tasks in mass spectrometry-based metabolomics. Annotating the molecular formula of a compound is the first step towards its structural elucidation. Yet even the annotation of molecular formulas remains highly challenging. This is particularly so for large compounds above 500 daltons, and for de novo annotations, for which we consider all chemically feasible formulas. Here we present ZODIAC, a network-based algorithm for the de novo annotation of molecular formulas. Uniquely, it enables fully automated and swift processing of complete experimental runs, providing high-quality, high-confidence molecular formula annotations. This allows us to annotate novel molecular formulas that are absent from even the largest public structure databases. Our method re-ranks molecular formula candidates by considering joint fragments and losses between fragmentation trees. We employ Bayesian statistics and Gibbs sampling. Thorough algorithm engineering ensures fast processing in practice. We evaluate ZODIAC on five datasets, producing results substantially (up to 16.5-fold) better than for several other methods, including SIRIUS, which is the state-of-the-art algorithm for molecular formula annotation at present. Finally, we report and verify several novel molecular formulas annotated by ZODIAC. To infer a previously unknown molecular formula from mass spectrometry data is a challenging, yet neglected problem. Ludwig and colleagues present a network-based approach to ranking possible formulas.