Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Noureddine, Moataz"
Sort by:
Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade
2021
Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.
Journal Article
Outcome of SARS-CoV-2 reinfection depends on genetic background in female mice
by
Cuadrado-Castano, Sara
,
García-Sastre, Adolfo
,
Laghlali, Gabriel
in
38/91
,
631/326/596/2557
,
631/326/596/4130
2024
Antigenically distinct SARS-CoV-2 variants increase the reinfection risk for vaccinated and previously exposed population due to antibody neutralization escape. COVID-19 severity depends on many variables, including host immune responses, which differ depending on genetic predisposition. To address this, we perform immune profiling of female mice with different genetic backgrounds –transgenic K18-hACE2 and wild-type 129S1– infected with the severe B.1.351, 30 days after exposure to the milder BA.1 or severe H1N1. Prior BA.1 infection protects against B.1.351-induced morbidity in K18-hACE2 but aggravates disease in 129S1. H1N1 protects against B.1.351-induced morbidity only in 129S1. Enhanced severity in B.1.351 re-infected 129S1 is characterized by an increase of IL-10, IL-1β, IL-18 and IFN-γ, while in K18-hACE2 the cytokine profile resembles naïve mice undergoing their first viral infection. Enhanced pathology during 129S1 reinfection cannot be attributed to weaker adaptive immune responses to BA.1. Infection with BA.1 causes long-term differential remodeling and transcriptional changes in the bronchioalveolar CD11c+ compartment. K18-hACE2 CD11c+ cells show a strong antiviral defense expression profile whereas 129S1 CD11c+ cells present a more pro-inflammatory response upon restimulation. In conclusion, BA.1 induces cross-reactive adaptive immune responses in K18-hACE2 and 129S1, but reinfection outcome correlates with differential CD11c+ cells responses in the alveolar space.
Genetic disposition can impact response to virus infection. Here, the authors used a reinfection approach with antigenically distinct SARS-CoV-2 variants Omicron and Beta and show that differences in the immune response correlate with disease outcome in mouse models with different genetic background upon reinfection.
Journal Article
248 Immunotherapy persister cells uncovered by dynamic single-cell RNA-sequencing
2020
BackgroundTo understand fundamental mechanisms of immune escape, we leveraged our functional ex vivo platform of murine derived organotypic tumor spheroids (DOTS)1 to determine if drug-tolerant persister cells analogous to oncogene targeted therapies limit efficacy of programmed death (PD)-1 blockade, and to identify therapeutic vulnerabilities to overcome anti-PD-1 (αPD-1) resistance.MethodsMurine syngeneic cancer models with well-characterized response to αPD-1 therapy were chosen: MC38 (sensitive) and CT26 (partially resistant). Bulk and single-cell (sc) RNA-sequencing (RNA-seq) were performed on αPD-1 treated DOTS. In vitro culture studies were conducted with or without cytokines (100 ng/ml) or drugs (500 nM). In vivo studies in mice bearing MC38 or CT26 tumors evaluated the combinatorial strategy with PD-1 blockade. We further evaluated our findings in scRNA-seq of an αPD-1 refractory colorectal cancer (CRC) patient tumor.2ResultsBulk RNA-seq of αPD-1 treated DOTS revealed a mesenchymal resistant phenotype with upregulated TNF-α/NFκB signaling (figure 1). scRNA-seq further identified a discrete sub-population of immunotherapy persister cells (IPCs). These cells expressed a stem-like phenotype including downregulation of E2F targets indicative of quiescence, suppression of interferon-γ response genes, induction of hybrid epithelial-to-mesenchymal state, and active IL-6 signaling (figure 1). Ly6a/stem cell antigen-1 (Sca-1) and Snai1 were found to be differentially upregulated in IPCs resistant to PD-1 blockade (not shown). Sca-1 positivity was confirmed in pre-existing tumor populations in vitro (figure 2). When enriched via sorting, these cells remained more persistently Sca-1+ at 96 hours in culture of CT26 compared to MC38 cells, related to increased autocrine IL-6 production by CT26 Sca-1+ cells. Indeed, IL-6 supplementation was capable of expanding Sca-1+ cells in culture (figure 2). Sca-1+ cells expressing ovalbumin peptide were refractory to OT-1 T cell mediated killing and failed to upregulate MHC class-1 antigen presentation (H-2Kb) in response to IL-6, in contrast to interferon-γ (not shown). Analysis of RNA-seq data further identified Birc2/3 as potential targets limiting TNF-mediated apoptosis of these cells (not shown). Notably, Birc2/3 antagonism depleted Sca-1+ IPCs in vitro and significantly potentiated the impact of PD-1 blockade in vivo in MC38, and less robustly in CT26 (figure 3). Evaluation in a microsatellite-instability high CRC patient identified a pre-existent IPC subpopulation within the αPD-1 refractory pre-treatment tumor, with high SNAI1 expression compared to CRC samples in TCGA (figure 4).Abstract 248 Figure 1Bulk and single-cell (sc) RNA-sequencing (RNA-seq) of MDOTS identifies an anti-PD-1 (αPD-1) resistant subpopulation of persister cells. IgG= isotype control[Figure omitted. See PDF]Abstract 248 Figure 2Pre-existent population of stem cell antigen-1 (Sca-1)+ cells expands in response to interleukin-6 (IL-6), as characterized by flow cytometry evaluation in murine syngeneic cancer models at baseline and after purification by fluorescence-activated cell sorting (FACS). H = hours[Figure omitted. See PDF]Abstract 248 Figure 3Combination of anti-PD-1 therapy with Birc2/3 antagonism increases tumor responses and improves survival. CR = complete response[Figure omitted. See PDF]Abstract 248 Figure 4Single-cell RNA-sequencing (scRNA-seq) of a pre-treatment microsatellite-instability (MSI-H) colorectal cancer (CRC) patient tumor, refractory to anti-PD-1 (αPD-1) therapy, reveals presence of SNAI1-high immunotherapy persister cells[Figure omitted. See PDF]ConclusionsHigh-resolution functional ex vivo profiling identified Sca-1+/Snai1high stem-like ‘immunotherapy persister cells‘ and uncovered their anti-apoptotic dependencies targetable with Birc2/3 antagonism to augment αPD-1 efficacy.Ethics ApprovalThis study was approved by the Dana-Farber Animal Care and Use Committee and Novartis Institutional Animal Care and Use Committee. Informed written consent to participate in Dana-Farber/Harvard Cancer Center institutional review board (IRB)-approved research protocols was obtained from the human subject. A copy of the written consent is available for review by the Editor of this journal. The study was conducted per the WMA Declaration of Helsinki and IRB-approved protocols.ReferencesJenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, et al. Ex Vivo Profiling of PD-1 Blockade using organotypic tumor spheroids. Cancer Discov. 2018;8(2):196–668 215.Gurjao C, Liu D, Hofree M, AlDubayan SH, Wakiro I, Su MJ, et al. intrinsic resistance to immune checkpoint blockade in a mismatch repair-deficient colorectal cancer. Cancer Immunol Res 2019;7(8):1230–6.
Journal Article
Transient lung eosinophilia during breakthrough influenza infection in vaccinated mice is associated with protective and balanced Type 1/2 immune responses
2025
Eosinophils are agile cells that participate in a multitude of homeostatic and inflammatory responses in the lung, ranging from allergic asthma to antiviral defense against respiratory viral infection. In the context of vaccination followed by viral infection, such as breakthrough infection, eosinophils have been linked to aberrant Th2 responses like vaccine-enhanced respiratory disease (VAERD). Here, we demonstrate that the lung immune cell composition, cytokine and chemokine repertoire, histopathological profile, and systemic humoral response of breakthrough influenza infection in mice is distinct from that of primary influenza infection or allergic sensitization, canonical Type 1 and 2 immune responses, respectively. Longitudinal comparison of breakthrough infection with allergic sensitization and primary influenza infection demonstrated major differences in lung immunity between treatment groups in female, BALB/c mice. Breakthrough infection mice exhibit lung eosinophil infiltration that peaks at 7-10 days post-challenge, enriched for the Siglec-F
subset, but in the absence of overt pro-inflammatory cytokine/chemokine signals, high viral titers, severe lung lesions, goblet cell hyperplasia, allergic levels of total IgE, or enhanced morbidity. Multiparameter fluorescence imaging corroborated findings from flow cytometry and also unveiled interactions between CD101
Siglec-F
cells with CD3
cells in the lung tissue space. Imaging also revealed a marked absence of eosinophil or neutrophil extracellular traps in the lungs of breakthrough infection mice, in contrast with allergic sensitization and primary influenza infection, respectively. Altogether, our findings provide a deeper understanding of the kinetics and cell-cell interplay during non-pathological, balanced Type 1/2 immune responses in vaccinated hosts during breakthrough infection.
Journal Article
Disease modulation by TIV vaccination during secondary pneumococcal infections in influenza-infected mice
2025
Secondary bacterial infections can significantly worsen the clinical course of influenza virus infections and are a leading cause of morbidity and mortality during seasonal influenza epidemics. Despite being a vaccine-preventable disease, influenza-related complications from secondary bacterial infections are an important cause of death, particularly among the elderly population.
(Spn) is the most common agent responsible for influenza-related secondary bacterial infections. Influenza virus vaccination serves as an effective prophylactic strategy for preventing influenza and reducing the burden of influenza-associated pathology, including secondary bacterial infection. However, whether the protective effects of influenza virus vaccination differ in the context of a secondary Spn infection at the level of the host response remains poorly characterized. Here, we present a preclinical mouse model to examine the impact of influenza vaccination in scenarios involving single infections with influenza A virus H1N1 (NC99) or Spn serotype 1; simultaneous infection with both NC99 and Spn (coinfection), or NC99 infection followed by Spn infection seven days later (superinfection). A single dose of trivalent inactivated Influenza vaccine (TIV) is able to decrease infection lethality in both secondary bacterial infection scenarios. Protection is associated with reduction in both viral and bacterial titers, decreased production of pro-inflammatory cytokines, protection of alveolar macrophages, prevention of exacerbated lung neutrophil recruitment, modulation of neutrophil activation status and induction of lung eosinophil recruitment and activation. These findings underscore the importance of influenza vaccination in modulating disease progression and preventing morbidity and mortality associated with secondary bacterial infections.
Journal Article
A combination TLR7/8 and RIG-I agonist adjuvant reverts asthmatic allergic sensitization and prevents aggravated influenza infection in OVA-sensitized mice
2025
Allergen-specific immunotherapy (AIT) is the only disease-modifying treatment currently available to treat allergy. However, it has limitations, as most allergens are poorly immunogenic, resulting in an AIT process that can take years. Therefore, adjuvant selection becomes critical to achieve a more efficacious therapy. Our group has developed and tested an amphiphilic TLR7/8 agonist (IMDQ) and a RIG-I agonist (SDI) that used alone, or in combination, have demonstrated strong adjuvant activity for influenza and SARS-CoV-2 vaccines in preclinical models. Here we describe the effect of these adjuvants in the sensitization of preclinical models with the ovalbumin (OVA) asthmatic allergic model via an in-depth humoral and cellular immune profiling. We assess their immune skewing and tolerance inducing capacities in previously sensitized preclinical models with different genetic backgrounds (C57BL/6
. BALB/c mice). Moreover, we evaluate their effect in an unrelated antigenic challenge with influenza. Finally, we investigate the role of IgG subclasses and T-cell subpopulations in the protection against OVA challenge conferred by the combination of IMDQ and SDI. We demonstrate that OVA-immunization in combination with IMDQ+SDI prevents allergic sensitization via the induction of a balanced Type 1/Type 2 response. Furthermore, it can revert the allergic phenotype in mice previously sensitized with OVA-Alum, through reducing lung eosinophilia, as well as IL-4 and IL-5 production. However, this was dependent on genetic background. IMDQ+SDI sensitization also led to reduced morbidity of a secondary influenza challenge in OVA-sensitized mice. Finally, we demonstrated that IgG2c, by itself, cannot protect from allergic sensitization and that both CD4
and CD8
T-cells are needed for IMDQ+SDI prevention of eosinophil recruitment and activation upon intranasal OVA-challenge.
Journal Article
Dendritic cells type 1 control the formation, maintenance, and function of tertiary lymphoid structures in cancer
2024
Tertiary lymphoid structures (TLS) are organized immune cell aggregates that arise in chronic inflammatory conditions. In cancer, TLS are associated with better prognosis and enhanced response to immunotherapy, making these structures attractive therapeutic targets. However, the mechanisms regulating TLS formation and maintenance in cancer are incompletely understood. Using spatial transcriptomics and multiplex imaging across various human tumors, we found an enrichment of mature dendritic cells (DC) expressing high levels of CCR7 in TLS, prompting us to investigate the role of DC in the formation and maintenance of TLS in solid tumors. To address this, we developed a novel murine model of non-small cell lung cancer (NSCLC) that forms mature TLS, containing B cell follicles with germinal centers and T cell zones with T follicular helper cells (T
) and TCF1
PD-1
progenitor exhausted CD8
T cells (Tpex). Here we show that, during the early stages of tumor development, TLS formation relies on IFNγ-driven maturation of the conventional DC type 1 (cDC1) subset, their migration to tumor-draining lymph nodes (tdLN), and recruitment of activated T cells to the tumor site. As tumors progress, TLS maintenance becomes independent of T cell egress from tdLN, coinciding with a significant reduction of cDC1 migration to tdLN. Instead, mature cDC1 accumulate within intratumoral CCR7 ligand-enriched stromal hubs. Notably, timed depletion of cDC1 or disruption of their migration to these stromal hubs after TLS are formed alters TLS maintenance. Importantly, we found that cDC1-mediated antigen presentation to both CD4
and CD8
T cells and intact CD40 signaling, is critical for the maintenance of TLS, the preservation of the T
cell pool, the formation of germinal center and the production of tumor-specific IgG antibodies. These findings underscore the key role of mature cDC1 in establishing and maintaining functional TLS within tumor lesions and highlight the potential for cDC1-targeting therapies as a promising strategy to enhance TLS function and improve anti-tumor immunity in patients with cancer.
Journal Article
Somatic structural variation targets neurodevelopmental genes and identifies SHANK2 as a tumor suppressor in neuroblastoma
2019
Neuroblastoma is a malignancy of the developing sympathetic nervous system that accounts for 12% of childhood cancer deaths. Like many childhood cancers, neuroblastoma exhibits a relative paucity of somatic single nucleotide variants (SNVs) and small insertions and deletions (indels) compared to adult cancers. Here, we assessed the contribution of somatic structural variation (SV) in neuroblastoma using a combination of whole genome sequencing (WGS; n=135) and single nucleotide polymorphism (SNP) genotyping (n=914) of matched tumor-normal pairs. Our study design allowed for orthogonal validation and replication across platforms. SV frequency, type, and localization varied significantly among high-risk tumors. MYCN non-amplified high-risk tumors harbored an increased SV burden overall, including a substantial excess of tandem-duplication events across the genome. Genes disrupted by SV breakpoints were enriched in neuronal lineages and autism spectrum disorder (ASD). The postsynaptic adapter protein-coding gene SHANK2, located on chromosome 11q13, was disrupted by SVs in 14% of MYCN non-amplified high-risk tumors based on WGS and 10% in the SNP array cohort. Expression of SHANK2 was low across human-derived neuroblastoma cell lines and high-risk neuroblastoma tumors. Forced expression of SHANK2 in neuroblastoma cell models resulted in significant growth inhibition (P=2.62x10-2 to 3.4x10-5) and accelerated neuronal differentiation following treatment with all-trans retinoic acid (P=3.08x10-13 to 2.38x10-30). These data further define the complex landscape of structural variation in neuroblastoma and suggest that events leading to deregulation of neurodevelopmental processes, such as inactivation of SHANK2, are key mediators of tumorigenesis in this childhood cancer. Footnotes * Figure 1a: Age at diagnosis has been ordered correctly Acknowledgements have been updated Full review and proofreading Number of figures reduced from 7 to 6