Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
16
result(s) for
"Nowakowski, Mark E."
Sort by:
Deterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque
by
Bhowmik, Debanjan
,
Lee, OukJae
,
Wong, Mark
in
639/301/1005/1008
,
639/766/119/1001
,
Data processing
2015
Spin-polarized electrons can move a ferromagnetic domain wall through the transfer of spin angular momentum when current flows in a magnetic nanowire. Such current induced control of a domain wall is of significant interest due to its potential application for low power ultra high-density data storage. In previous reports, it has been observed that the motion of the domain wall always happens parallel to the current flow – either in the same or opposite direction depending on the specific nature of the interaction. In contrast, here we demonstrate deterministic control of a ferromagnetic domain wall orthogonal to current flow by exploiting the spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO heterostructure in presence of an in-plane magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Therefore the domain wall motion happens purely due to spin orbit torque. These results represent a completely new degree of freedom in current induced control of a ferromagnetic domain wall.
Journal Article
Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains
2015
Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.
Closely-spaced anisotropically-engineered single-domain nanomagnets may be exploited to encode and transmit binary information. Here, Gu
et al
. use time-resolved X-ray microscopy to image signal propagation at the intrinsic nanomagnetic switching limit in permalloy nanomagnet chains.
Journal Article
Current-Modulated Magnetoplasmonic Devices
2018
We model the operation and readout sensitivity of two current-modulated magnetoplasmonic devices which exploit spin Hall effect-like behavior as a function of their device and material parameters. In both devices, current pulses are applied to an electrically-isolated stack, containing an active layer (either a metal with large spin orbit coupling or a topological insulator) embedded within a plasmonic metal (Au). The first device, composed of a ferromagnet and the active layer, illustrates a plasmonic readout scheme for detecting magnetic reorientation driven by current-induced spin transfer torques. The plasmonic readout of these current-modulated non-volatile states may facilitate the development of plasmon-based memory or logic devices. The second device, containing only the active layer, explores the magnetoplasmonic readout conditions required to directly measure the spin accumulation in these materials. The estimated thickness-dependent sensitivity agrees with recent experimental magneto-optical Kerr effect observations.
Sub-nanosecond signal propagation in anisotropy engineered nanomagnetic logic chains
by
Nowakowski, Mark E
,
Alam, Mohmmad T
,
Marcus, Matthew A
in
Anisotropy
,
Chains
,
Computer simulation
2014
Energy efficient nanomagnetic logic (NML) computing architectures propagate and process binary information by relying on dipolar field coupling to reorient closely-spaced nanoscale magnets. Signal propagation in nanomagnet chains of various sizes, shapes, and magnetic orientations has been previously characterized by static magnetic imaging experiments with low-speed adiabatic operation; however the mechanisms which determine the final state and their reproducibility over millions of cycles in high-speed operation (sub-ns time scale) have yet to be experimentally investigated. Monitoring NML operation at its ultimate intrinsic speed reveals features undetectable by conventional static imaging including individual nanomagnetic switching events and systematic error nucleation during signal propagation. Here, we present a new study of NML operation in a high speed regime at fast repetition rates. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic soft x-ray transmission microscopy after applying single nanosecond magnetic field pulses. Further, we use time-resolved magnetic photo-emission electron microscopy to evaluate the sub-nanosecond dipolar coupling signal propagation dynamics in optimized chains with 100 ps time resolution as they are cycled with nanosecond field pulses at a rate of 3 MHz. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macro-spin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.
Deterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque
by
Bhowmik, Debanjan
,
Nowakowski, Mark E
,
Long, You
in
Domain walls
,
Magnetic fields
,
Multilayers
2014
Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. From these measurements, which are unaffected by any conventional spin transfer torque by symmetry, we estimate the spin orbit torque efficiency of Ta to be 0.08.
Speed and Reliability of Nanomagnetic Logic Technology
2014
Nanomagnetic logic is an energy efficient computing architecture that relies on the dipole field coupling of neighboring magnets to transmit and process binary information. In this architecture, nanomagnet chains act as local interconnects. To assess the merits of this technology, the speed and reliability of magnetic signal transmission along these chains must be experimentally determined. In this work, time-resolved pump-probe x-ray photo-emission electron microscopy is used to observe magnetic signal transmission along a chain of nanomagnets. We resolve successive error-free switching events in a single nanomagnet chain at speeds on the order of 100 ps per nanomagnet, consistent with predictions based on micromagnetic modeling. Errors which disrupt transmission are also observed. We discuss the nature of these errors, and approaches for achieving reliable operation.
An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder
2018
Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.
This study presents a framework to evaluate rare and de novo variation from whole-genome sequencing (WGS). The work suggests that robust results from WGS studies will require large cohorts and strategies that consider the substantial multiple-testing burden.
Journal Article
Tropism of SARS-CoV-2 for human cortical astrocytes
by
Simoneau, Camille R.
,
Ott, Melanie
,
Wang, Li
in
ACE2
,
Angiotensin-converting enzyme 2
,
Angiotensin-Converting Enzyme 2 - metabolism
2022
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.
Journal Article
Integrated gene analyses of de novo variants from 46,612 trios with autism and developmental disorders
by
Henning, Barbara
,
Gilissen, Christian
,
Kim, Chang N.
in
Autism
,
Autism Spectrum Disorder - genetics
,
Autistic Disorder - genetics
2022
Most genetic studies consider autism spectrum disorder (ASD) and developmental disorder (DD) separately despite overwhelming comorbidity and shared genetic etiology. Here, we analyzed de novo variants (DNVs) from 15,560 ASD (6,557 from SPARK) and 31,052 DD trios independently and also combined as broader neurodevelopmental disorders (NDDs) using three models. We identify 615 NDD candidate genes (false discovery rate [FDR] < 0.05) supported by ≥1 models, including 138 reaching Bonferroni exome-wide significance (P < 3.64e–7) in all models. The genes group into five functional networks associating with different brain developmental lineages based on singlecell nuclei transcriptomic data.We find no evidence for ASD-specific genes in contrast to 18 genes significantly enriched for DD. There are 53 genes that show mutational bias, including enrichments for missense (n = 41) or truncating (n = 12) DNVs. We also find 10 genes with evidence of male- or female-bias enrichment, including 4 X chromosome genes with significant female burden (DDX3X, MECP2, WDR45, and HDAC8). This large-scale integrative analysis identifies candidates and functional subsets of NDD genes.
Journal Article
RE-MIND2: comparative effectiveness of tafasitamab plus lenalidomide versus polatuzumab vedotin/bendamustine/rituximab (pola-BR), CAR-T therapies, and lenalidomide/rituximab (R2) based on real-world data in patients with relapsed/refractory diffuse large B-cell lymphoma
by
Trotman, Judith
,
Hess, Georg
,
Fleury, Isabelle
in
Immunotherapy
,
Lymphoma
,
Monoclonal antibodies
2023
RE-MIND2 (NCT04697160) compared patient outcomes from the L-MIND (NCT02399085) trial of tafasitamab+lenalidomide with those of patients treated with other therapies for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) who are autologous stem cell transplant ineligible. We present outcomes data for three pre-specified treatments not assessed in the primary analysis.Data were retrospectively collected from sites in North America, Europe, and the Asia Pacific region. Patients were aged ≥18 years with histologically confirmed DLBCL and received ≥2 systemic therapies for DLBCL (including ≥1 anti-CD20 therapy). Patients enrolled in the observational and L-MIND cohorts were matched using propensity score-based 1:1 nearest-neighbor matching, balanced for six covariates. Tafasitamab+lenalidomide was compared with polatuzumab vedotin+bendamustine+rituximab (pola-BR), rituximab+lenalidomide (R2), and CD19-chimeric antigen receptor T-cell (CAR-T) therapies. The primary endpoint was overall survival (OS). Secondary endpoints included treatment response and progression-free survival.From 200 sites, 3,454 patients were enrolled in the observational cohort. Strictly matched patient pairs consisted of tafasitamab+lenalidomide versus pola-BR (n = 24 pairs), versus R2 (n = 33 pairs), and versus CAR-T therapies (n = 37 pairs). A significant OS benefit was observed with tafasitamab+lenalidomide versus pola-BR (HR: 0.441; p = 0.034) and R2 (HR: 0.435; p = 0.012). Comparable OS was observed in tafasitamab+lenalidomide and CAR-T cohorts (HR: 0.953, p = 0.892).Tafasitamab+lenalidomide appeared to improve survival outcomes versus pola-BR and R2, and comparable outcomes were observed versus CAR-T. Although based on limited patient numbers, these data may help to contextualize emerging therapies for R/R DLBCL.Clinical trial registrationNCT04697160 (January 6, 2021)
Journal Article