Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"OAKLEAF, JAMES R."
Sort by:
Mapping the planet’s critical areas for biodiversity and nature’s contributions to people
by
Strimas-Mackey, Matthew
,
Chaplin-Kramer, Rebecca
,
Schuster, Richard
in
631/158/2458
,
631/158/670
,
631/158/672
2024
Meeting global commitments to conservation, climate, and sustainable development requires consideration of synergies and tradeoffs among targets. We evaluate the spatial congruence of ecosystems providing globally high levels of nature’s contributions to people, biodiversity, and areas with high development potential across several sectors. We find that conserving approximately half of global land area through protection or sustainable management could provide 90% of the current levels of ten of nature’s contributions to people and meet minimum representation targets for 26,709 terrestrial vertebrate species. This finding supports recent commitments by national governments under the Global Biodiversity Framework to conserve at least 30% of global lands and waters, and proposals to conserve half of the Earth. More than one-third of areas required for conserving nature’s contributions to people and species are also highly suitable for agriculture, renewable energy, oil and gas, mining, or urban expansion. This indicates potential conflicts among conservation, climate and development goals.
This study shows that conserving approximately half of global land area through protection or sustainable management could provide 90% of ten of nature’s contributions to people and could meet representation targets for 26,709 species of mammals, birds, amphibians, and reptiles. This finding supports recent commitments to conserve at least 30% of global lands and waters by 2030.
Journal Article
A World at Risk: Aggregating Development Trends to Forecast Global Habitat Conversion
by
Jarvis, Larissa
,
Gerber, James S.
,
West, Paul C.
in
Africa
,
Agricultural expansion
,
Agricultural land
2015
A growing and more affluent human population is expected to increase the demand for resources and to accelerate habitat modification, but by how much and where remains unknown. Here we project and aggregate global spatial patterns of expected urban and agricultural expansion, conventional and unconventional oil and gas, coal, solar, wind, biofuels and mining development. Cumulatively, these threats place at risk 20% of the remaining global natural lands (19.68 million km2) and could result in half of the world's biomes becoming >50% converted while doubling and tripling the extent of land converted in South America and Africa, respectively. Regionally, substantial shifts in land conversion could occur in Southern and Western South America, Central and Eastern Africa, and the Central Rocky Mountains of North America. With only 5% of the Earth's at-risk natural lands under strict legal protection, estimating and proactively mitigating multi-sector development risk is critical for curtailing the further substantial loss of nature.
Journal Article
Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors
by
Johnson, Justin A
,
Oakleaf, James R
,
Kennedy, Christina M
in
Agriculture
,
Biofuels
,
Fossil fuels
2019
Mapping suitable land for development is essential to land use planning efforts that aim to model, anticipate, and manage trade-offs between economic development and the environment. Previous land suitability assessments have generally focused on a few development sectors or lack consistent methodologies, thereby limiting our ability to plan for cumulative development pressures across geographic regions. Here, we generated 1-km spatially-explicit global land suitability maps, referred to as “development potential indices” (DPIs), for 13 sectors related to renewable energy (concentrated solar power, photovoltaic solar, wind, hydropower), fossil fuels (coal, conventional and unconventional oil and gas), mining (metallic, non-metallic), and agriculture (crop, biofuels expansion). To do so, we applied spatial multi-criteria decision analysis techniques that accounted for both resource potential and development feasibility. For each DPI, we examined both uncertainty and sensitivity, and spatially validated the map using locations of planned development. We illustrate how these DPIs can be used to elucidate potential individual sector expansion and cumulative development patterns.
Journal Article
Global extent and change in human modification of terrestrial ecosystems from 1990 to 2022
by
Theobald, David M.
,
Voigt, Maria
,
Kiesecker, Joe
in
704/158/1144
,
704/158/672
,
Anthropogenic Effects
2025
Habitat loss and degradation associated with industrial development is the primary threat and dominant driver of biodiversity loss globally. Spatially-explicit datasets that estimate human pressures are essential to understand the extent and rate of anthropogenic impacts on ecosystems and are critical to inform conservation commitments and efforts under the Global Biodiversity Framework. We leveraged the human modification framework to generate comprehensive, consistent, detailed, robust, temporal, and contemporary datasets to map cumulative and individual threats associated with industrial human activities to terrestrial biodiversity and ecosystems from 1990 to 2022. In ~2022, 43% of terrestrial lands had very low levels of modification, while 27%, 20%, and 10% had low, moderate, and high modification, respectively. Nearly 2/3 of biomes and 1/2 of ecoregions currently are moderately-modified, and 24% of terrestrial ecosystems (31 M km
2
) experienced increased modification from 1990 to 2020. About 29% of countries and 31% of ecoregions might also be particularly vulnerable to biodiversity loss given their above-average increased modification and less than 30% protection.
Journal Article
Hitting the Target but Missing the Mark: Unintended Environmental Consequences of the Paris Climate Agreement
by
Griscom, Bronson W.
,
Baruch-Mordo, Sharon
,
Kiesecker, Joseph
in
Alternative energy sources
,
Biodiversity
,
Biodiversity hot spots
2019
Meeting climate mitigation and sustainable development goals requires rapid increases in both renewable energy development and carbon storage in ecosystems. If sited with the sole goal of maximizing production, renewable energy may negatively impact biodiversity and carbon storage. Here, we evaluated the potential unintended environmental consequences of this type of business-as-usual development scenario. We spatially allocated land-based, utility-scaled wind and solar energy needed to achieve emission reduction goals from nationally determined contributions under the Paris Climate Agreement. Siting was conducted at 1-km resolution and followed a scenario where on-shore wind, concentrated solar power, and photovoltaic solar renewable energy developments were located where wind and solar resources were highest. Once sited, we evaluated the potential losses of natural lands, Key Biodiversity Areas (KBAs), threatened and endangered species, and carbon emissions. Over 11 million ha of natural lands can be lost (>1/4 in KBAs), releasing almost 415 million tons of carbon storage, which equals 8.6% of overall Paris Agreement emission reduction goals. Globally we found that the ranges of 1,574 threatened and endanger species could be impacted, with the highest numbers in the tropical countries of Indonesia (282), Malaysia (273) and Thailand (253). Avoiding land-based emissions through improved renewable energy siting can reduce these losses, potentially saving $47.5-$155.9 billion USD based on social carbon costs. Consideration of these impacts will help reduce investor risk to facilitate a timely transition to a low-carbon economy.
Journal Article
Land use and Europe’s renewable energy transition: identifying low-conflict areas for wind and solar development
by
Nagaraju, Shivaprakash K.
,
Kiesecker, Joseph M.
,
Vejnović, Igor
in
Agricultural land
,
Alternative energy sources
,
Biodiversity
2024
Continued dependence on imported fossil fuels is rapidly becoming unsustainable in the face of the twin challenges of global climate change and energy security demands in Europe. Here we present scenarios in line with REPowerEU package to identify Renewables Acceleration Areas that support rapid renewable expansion, while ensuring minimal harm to places important for biodiversity and rural communities. We calculated the area needed to meet renewable energy objectives under Business-as-Usual (BAU) and Low-conflict (LCON) development scenarios within each country, providing a broad overview of the potential for renewable energy generation to reduce impacts when development is steered toward lower conflict lands. Our analysis shows that meeting renewable energy objectives would require a network of land-based wind turbines and solar arrays encompassing upwards of 164,789 km 2 by 2030 and 445,654 km 2 by 2050, the latter roughly equivalent to the land area of Sweden. Our results highlight that BAU development patterns disproportionately target high-conflict land cover types. By 2030, depending on the development pathway, solar and wind development are projected to impact approximately 4,386–20,996 km 2 and 65,735–138,454 km 2 of natural and agricultural lands, respectively. As renewable energy objectives increase from 2030 to 2050 impacts to natural and agricultural lands also increase, with upwards of 33,911 km 2 from future solar development and 399,879 km 2 from wind development. Despite this large footprint, low-conflict lands can generate substantial renewable energy: 6.6 million GWh of solar and 3.5 million GWh of wind, 8–31 times 2030 solar objectives and 3–5 times 2030 wind objectives. Given these patterns, we emphasize the need for careful planning in areas with greater impact potential, either due to a larger demand for land area or limited land availability. Top-emitting countries with large renewable energy objectives (Germany, Italy, Poland, France, Spain) and those with limited flexibility in meeting objectives on low-conflict land (Albania, Slovenia, Montenegro, Hungary, Croatia, Serbia, Bosnia Herzegovina, Finland, Greece, Portugal, and Norway) should be priorities for country-level customizations to guide low-conflict siting and avoid disproportionate impacts on high-value areas.
Journal Article
The Road to India’s Renewable Energy Transition Must Pass through Crowded Lands
by
Nagaraju, Shivaprakash K.
,
Chandran, Pooja
,
Kiesecker, Joseph M.
in
Alternative energy sources
,
Biodiversity
,
Climate change
2023
The significance of renewable energy in achieving necessary reductions in emissions to limit global warming to 1.5 degrees Celsius is widely acknowledged. However, there is growing concern over the allocation of land for constructing the required new infrastructure. Nowhere is this conflict more apparent than in India, where renewable energy targets are ambitious and land use conflicts are already significant. India intends to increase renewable energy to 500 GW by 2030. This would require an additional 42 GW of renewable energy to be installed every year. Although renewable energy can provide the solution to both India’s growing need for cheap energy and climate change mitigation, the sustainable future of renewable energy deployment is far from simple due to its associated land use impacts and socio-ecological risk. While others have highlighted challenges to India’s renewable energy targets, here we focus on the land use change issues that will need to be addressed for India to meet its targets. We introduce a series of recommendations and highlight how these could contribute to mainstreaming land values and facilitate the implementation of India’s 2030 renewable energy targets. These recommendations include suggested planning approaches that would guide the development of standard siting guidelines, identification of preferential “go-to” areas for renewable energy, and the development of tools that allow access to data and information to site renewable right. Policy recommendations highlight utilizing converted lands and existing built infrastructure for renewable energy development, and adapting existing policies so they address land use impacts.
Journal Article
Habitat Selection by Recolonizing Wolves in the Northern Rocky Mountains of the United States
by
BANGS, EDWARD E.
,
JIMENEZ, MICHAEL D.
,
MURRAY, DENNIS L.
in
Animal populations
,
Canis lupus
,
Conservation biology
2006
Gray wolf (Canis lupus) populations have persisted and expanded in northwest Montana since 1986, while reintroduction efforts in Idaho and Yellowstone have further bolstered the regional population. However, rigorous analysis of either the availability of wolf habitat in the entire region, or the specific habitat requirements of local wolves, has yet to be conducted. We examined wolf-habitat relationships in the northern Rocky Mountains of the U.S. by relating landscape/habitat features found within wolf pack home ranges (n = 56) to those found in adjacent non-occupied areas (n = 56). Logistic regression revealed that increased forest cover, lower human population density, higher elk density, and lower sheep density were the primary factors related to wolf occupation. Similar factors promoted wolf pack persistence. Further, our analysis indicated that relatively large tracts of suitable habitat remain unoccupied in the Rocky Mountains, suggesting that wolf populations likely will continue to increase in the region. Analysis of the habitat linkage between the 3 main wolf recovery areas indicates that populations in central Idaho and northwest Montana have higher connectivity than either of the 2 recovery areas to the Greater Yellowstone recovery area. Thus, for the northern Rocky Mountains to function as a metapopulation for wolves, it will be necessary that dispersal corridors to the Yellowstone ecosystem be established and conserved.
Journal Article
Tailoring Global Data to Guide Corporate Investments in Biodiversity, Environmental Assessments and Sustainability
by
Kennedy, Christina
,
Kiesecker, Joseph
,
Oakleaf, James
in
Biodiversity
,
business enterprises
,
corporations
2013
Companies make significant investments in environmental impacts assessments, biodiversity action plans, life-cycle assessments, and environmental management systems, but guidance on where and when these tools can be best used, and how they may scale-up to inform corporation-wide planning, is sorely lacking. A major barrier to informed environmental decision-making within companies, especially in data poor regions of the world, is the difficulty accessing, analyzing, and interpreting biodiversity information. To address this shortcoming, we analyzed nine publicly available environmental datasets, and created five globally-relevant metrics associated with biodiversity: habitat intactness, habitat protection, species richness (globally and biome normalized), and threatened species. We demonstrate how packaging these metrics within an open-source, web-based mapping tool can facilitate corporations in biodiversity prioritization of their sites (or their supply chains), ultimately guiding potential investments in the environment.
Journal Article