Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32
result(s) for
"Obama, Takashi"
Sort by:
The Oxidized Lipoproteins In Vivo: Its Diversity and Behavior in the Human Circulation
2023
A high concentration of low-density lipoproteins (LDLs) in circulation has been well-known as a major risk factor for cardiovascular diseases. The presence of oxidized LDLs (oxLDLs) in atherosclerotic lesions and circulation was demonstrated using anti-oxLDL monoclonal antibodies. The so-called “oxLDL hypothesis”, as a mechanism for atherosclerosis development, has been attracting attention for decades. However, the oxLDL has been considered a hypothetical particle since the oxLDL present in vivo has not been fully characterized. Several chemically modified LDLs have been proposed to mimic oxLDLs. Some of the subfractions of LDL, especially Lp(a) and electronegative LDL, have been characterized as oxLDL candidates as oxidized phospholipids that stimulate vascular cells. Oxidized high-density lipoprotein (oxHDL) and oxLDL were discovered immunologically in vivo. Recently, an oxLDL-oxHDL complex was found in human plasma, suggesting the involvement of HDLs in the oxidative modification of lipoproteins in vivo. In this review, we summarize our understanding of oxidized lipoproteins and propose a novel standpoint to understand the oxidized lipoproteins present in vivo.
Journal Article
Neutrophils as a Novel Target of Modified Low-Density Lipoproteins and an Accelerator of Cardiovascular Diseases
by
Obama, Takashi
,
Itabe, Hiroyuki
in
Atherosclerosis - metabolism
,
Cardiovascular Diseases - immunology
,
Cardiovascular Diseases - metabolism
2020
Neutrophil extracellular traps (NETs) significantly contribute to various pathophysiological conditions, including cardiovascular diseases. NET formation in the vasculature exhibits inflammatory and thrombogenic activities on the endothelium. NETs are induced by various stimulants such as exogenous damage-associated molecular patterns (DAMPs). Oxidatively modified low-density lipoprotein (oxLDL) has been physiologically defined as a subpopulation of LDL that comprises various oxidative modifications in the protein components and oxidized lipids, which could act as DAMPs. oxLDL has been recognized as a crucial initiator and accelerator of atherosclerosis through foam cell formation by macrophages; however, recent studies have demonstrated that oxLDL stimulates neutrophils to induce NET formation and enhance NET-mediated inflammatory responses in vascular endothelial cells, thereby suggesting that oxLDL may be involved in cardiovascular diseases through neutrophil activation. As NETs comprise myeloperoxidase and proteases, they have the potential to mediate oxidative modification of LDL. This review summarizes recent updates on the analysis of NETs, their implications for cardiovascular diseases, and prospects for a possible link between NET formation and oxidative modification of lipoproteins.
Journal Article
High-Density Lipoprotein Suppresses Neutrophil Extracellular Traps Enhanced by Oxidized Low-Density Lipoprotein or Oxidized Phospholipids
by
Watanabe, Yuichi
,
Ohinata, Hitomi
,
Obama, Takashi
in
Cholesterol
,
Endothelial Cells
,
Extracellular Traps
2022
Neutrophil extracellular traps (NETs) are found in patients with various diseases, including cardiovascular diseases. We previously reported that copper-oxidized low-density lipoprotein (oxLDL) promotes NET formation of neutrophils, and that the resulting NETs increase the inflammatory responses of endothelial cells. In this study, we investigated the effects of high-density lipoproteins (HDL) on NET formation. HL-60-derived neutrophils were treated with phorbol 12-myristate 13-acetate (PMA) and further incubated with oxLDL and various concentrations of HDL for 2 h. NET formation was evaluated by quantifying extracellular DNA and myeloperoxidase. We found that the addition of native HDL partially decreased NET formation of neutrophils induced by oxLDL. This effect of HDL was lost when HDL was oxidized. We showed that oxidized phosphatidylcholines and lysophosphatidylcholine, which are generated in oxLDL, promoted NET formation of PMA-primed neutrophils, and NET formation by these products was completely blocked by native HDL. Furthermore, we found that an electronegative subfraction of LDL, LDL(–), which is separated from human plasma and is thought to be an in vivo oxLDL, was capable of promoting NET formation. These results suggest that plasma lipoproteins and their oxidative modifications play multiple roles in promoting NET formation, and that HDL acts as a suppressor of this response.
Journal Article
Sar1 Affects the Localization of Perilipin 2 to Lipid Droplets
2022
Lipid droplets (LDs) are intracellular organelles that are ubiquitous in many types of cells. The LD core consists of triacylglycerols (TGs) surrounded by a phospholipid monolayer and surface proteins such as perilipin 2 (PLIN2). Although TGs accumulate in the phospholipid bilayer of the endoplasmic reticulum (ER) and subsequently nascent LDs buds from ER, the mechanism by which LD proteins are transported to LD particles is not fully understood. Sar1 is a GTPase known as a regulator of coat protein complex Ⅱ (COPⅡ) vesicle budding, and its role in LD formation was investigated in this study. HuH7 human hepatoma cells were infected with adenoviral particles containing genes coding GFP fused with wild-type Sar1 (Sar1 WT) or a GTPase mutant form (Sar1 H79G). When HuH7 cells were treated with oleic acid, Sar1 WT formed a ring-like structure around the LDs. The transient expression of Sar1 did not significantly alter the levels of TG and PLIN2 in the cells. However, the localization of PLIN2 to the LDs decreased in the cells expressing Sar1 H79G. Furthermore, the effects of Sar1 on PLIN2 localization to the LDs were verified by the suppression of endogenous Sar1 using the short hairpin RNA technique. In conclusion, it was found that Sar1 has some roles in the intracellular distribution of PLIN2 to LDs in liver cells.
Journal Article
Structure and Dynamics of Oxidized Lipoproteins In Vivo: Roles of High-Density Lipoprotein
by
Obama, Takashi
,
Itabe, Hiroyuki
,
Sawada, Naoko
in
acute myocardial infarction
,
Angioplasty
,
Apolipoproteins
2021
Oxidative modification of lipoproteins is implicated in the occurrence and development of atherosclerotic lesions. Earlier studies have elucidated on the mechanisms of foam cell formation and lipid accumulation in these lesions, which is mediated by scavenger receptor-mediated endocytosis of oxidized low-density lipoprotein (oxLDL). Mounting clinical evidence has supported the involvement of oxLDL in cardiovascular diseases. High-density lipoprotein (HDL) is known as anti-atherogenic; however, recent studies have shown circulating oxidized HDL (oxHDL) is related to cardiovascular diseases. A modified structure of oxLDL, which was increased in the plasma of patients with acute myocardial infarction, was characterized. It had two unique features: (1) a fraction of oxLDL accompanied oxHDL, and (2) apoA1 was heavily modified, while modification of apoB, and the accumulation of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) was less pronounced. When LDL and HDL were present at the same time, oxidized lipoproteins actively interacted with each other, and oxPC and lysoPC were transferred to another lipoprotein particle and enzymatically metabolized rapidly. This brief review provides a novel view on the dynamics of oxLDL and oxHDL in circulation.
Journal Article
Oxysterols Suppress Release of DNA from Granulocytes into Extracellular Space After Stimulation with Phorbol Myristate Acetate
by
Watanabe, Yuichi
,
Obama, Takashi
,
Itabe, Hiroyuki
in
12-O-Tetradecanoylphorbol-13-acetate
,
Acetates
,
Acetic acid
2024
Background: Neutrophils eject their DNA strings and cellular proteins into the extracellular space upon treatment with various stimulants. In the present study, we examined the effects of four major oxidized cholesterol metabolites on DNA release from granulocytes. Methods and Results: When oxysterols were added to HL-60-derived granulocytes stimulated with phorbol 12-myristate 13-acetate (PMA), they suppressed the release of DNA and myeloperoxidase from the cells. Among the four oxysterols tested, 7-ketocholesterol was the most effective. Addition of the same concentration of 7-ketocholesterol did not induce any cytotoxic effects, as evaluated based on the release of lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT) assays. DNA release from human peripheral blood neutrophils after PMA stimulation was also suppressed by 7-ketocholesterol. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis was used to quantify sterol content in the cells. The addition of oxysterols increased the cellular content of the corresponding compounds by more than 10-fold compared to those at baseline. Treatment of HL-60-derived granulocytes with methyl-β-cyclodextrin that removes sterol compounds from the membranes increased DNA release from the cells in a dose-dependent manner. Conclusions: These results suggest that oxysterols have suppressive effects on DNA release from granulocytes stimulated with PMA.
Journal Article
Comparison of protein profiles of the pellicle, gingival crevicular fluid, and saliva: possible origin of pellicle proteins
2020
Background
The pellicle, the acellular organic material deposited on the surface of tooth enamel, has been thought to be derived from saliva. In this study, protein compositions of the pellicle, gingival crevicular fluid, and saliva collected from healthy adults were compared to elucidate the origin of pellicle proteins.
Results
The pellicle, gingival crevicular fluid, and saliva from the parotid gland or mixed gland were collected; subsequently, protein expression in samples from the respective individual was compared by SDS-PAGE and mass spectrometry. Following SDS-PAGE, proteins in the major bands were identified by mass spectrometry. The band pattern of pellicle proteins appeared different from those of gingival crevicular fluid, or saliva samples. Using mass spectrometry, 13 proteins in these samples were identified. The relative abundance of the proteins was quantitatively analyzed using mass spectrometry coupled with stable isotope labeling and by western blot. Cystatin S and α-amylase detected in pellicle were enriched in saliva samples, but not in gingival crevicular fluid, by western blot, and their abundance ratios were high in saliva and low in gingival crevicular fluid when analyzed by stable isotope labeling. Serotransferrin, however, was found only in the pellicle and gingival crevicular fluid by western blot and its abundance ratio was low in saliva.
Conclusions
Our study revealed that the gingival crevicular fluid appears to contribute to pellicle formation in addition to saliva.
Journal Article
Investigation of Lipoproteins Oxidation Mechanisms by the Analysis of Lipid Hydroperoxide Isomers
by
Osuka, Yusuke
,
Nakagawa, Kiyotaka
,
Khalifa, Saoussane
in
Acids
,
Alzheimer's disease
,
Antioxidants
2021
The continuous formation and accumulation of oxidized lipids (e.g., lipid hydroperoxides (LOOH)) which are present even in plasma lipoproteins of healthy subjects, are ultimately considered to be linked to various diseases. Because lipid peroxidation mechanisms (i.e., radical, singlet oxygen, and enzymatic oxidation) can be suppressed by certain proper antioxidants (e.g., radical oxidation is efficiently suppressed by tocopherol), in order to suppress lipid peroxidation successfully, the determination of the peroxidation mechanism involved in the formation of LOOH is deemed crucial. In this study, to determine the peroxidation mechanisms of plasma lipoproteins of healthy subjects, we develop novel analytical methods using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PC 16:0/18:2;OOH) and cholesteryl linoleate hydroperoxide (CE 18:2;OOH) isomers. Using the newly developed methods, these PC 16:0/18:2;OOH and CE 18:2;OOH isomers in the low-density lipoprotein (LDL) and high-density lipoprotein (HDL) of healthy subjects are analyzed. Consequently, it is found that predominant PC 16:0/18:2;OOH and CE 18:2;OOH isomers in LDL and HDL are PC 16:0/18:2;9OOH, PC 16:0/18:2;13OOH, CE 18:2;9OOH, and CE 18:2;13OOH, which means that PC and CE in LDL and HDL are mainly oxidized by radical and/or enzymatic oxidation. In conclusion, the insights about the oxidation mechanisms shown in this study would be useful for a more effective suppression of oxidative stress in the human organism.
Journal Article
Transfer and Enzyme-Mediated Metabolism of Oxidized Phosphatidylcholine and Lysophosphatidylcholine between Low- and High-Density Lipoproteins
by
Fukuhara, Kiyoshi
,
Obama, Takashi
,
Sawada, Naoko
in
Acyltransferase
,
antioxidants
,
Blood lipoproteins
2020
Oxidized low-density lipoprotein (oxLDL) and oxidized high-density lipoprotein (oxHDL), known as risk factors for cardiovascular disease, have been observed in plasma and atheromatous plaques. In a previous study, the content of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) species stayed constant in isolated in vivo oxLDL but increased in copper-induced oxLDL in vitro. In this study, we prepared synthetic deuterium-labeled 1-palmitoyl lysoPC and palmitoyl-glutaroyl PC (PGPC), a short chain-oxPC to elucidate the metabolic fate of oxPC and lysoPC in oxLDL in the presence of HDL. When LDL preloaded with d13-lysoPC was mixed with HDL, d13-lysoPC was recovered in both the LDL and HDL fractions equally. d13-LysoPC decreased by 50% after 4 h of incubation, while d13-PC increased in both fractions. Diacyl-PC production was abolished by an inhibitor of lecithin-cholesterol acyltransferase (LCAT). When d13-PGPC-preloaded LDL was incubated with HDL, d13-PGPC was transferred to HDL in a dose-dependent manner when both LCAT and lipoprotein-associated phospholipase A2 (Lp-PLA2) were inhibited. Lp-PLA2 in both HDL and LDL was responsible for the hydrolysis of d13-PGPC. These results suggest that short chain-oxPC and lysoPC can transfer between lipoproteins quickly and can be enzymatically converted from oxPC to lysoPC and from lysoPC to diacyl-PC in the presence of HDL.
Journal Article
Crucial Role of Perilipin-3 (TIP47) in Formation of Lipid Droplets and PGE2 Production in HL-60-Derived Neutrophils
2013
Cytosolic lipid droplets (LDs), which are now recognized as multifunctional organelles, accumulate in leukocytes under various inflammatory conditions. However, little is known about the characteristic features of LDs in neutrophils. In this study, we show that perilipin-3 (PLIN3; formerly called TIP47) is involved in LD formation and the inflammatory response in HL-60-derived neutrophils. HL-60, a promyelocytic cell line, was differentiated into neutrophils via treatment with all-trans retinoic acid. After differentiation, cells were stimulated with Porphyromonas gingivalis lipopolysaccharide (P.g-LPS), a major pathogen in adult periodontitis. When HL-60-derived neutrophils were stimulated with P.g-LPS, LDs increased in both number and size. In the differentiated cells, PLIN3 was induced while PLIN1, PLIN2 and PLIN5 were not detected. PGE2 production and the PLIN3 protein level were increased by the P.g-LPS treatment of the cells in a dose-dependent manner. When PLIN3 was down-regulated with siRNA treatment, LDs essentially disappeared and the level of PGE2 secreted in the cell culture medium decreased by 65%. In addition, the suppression of PLIN3 repressed the PGE2 producing enzymes; i.e., microsomal PGE synthase-1, -2 and cyclooxygenase-2. These findings indicate that PLIN3 has a pivotal role in LD-biogenesis in HL-60-derived neutrophils, and that PLIN3 is associated with the synthesis and secretion of PGE2.
Journal Article