Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Oberhuber, Natalie"
Sort by:
Synthesis and Bioactivity of Ancorinoside B, a Marine Diglycosyl Tetramic Acid
The sponge metabolite ancorinoside B was prepared for the first time in 16 steps and 4% yield. It features a β-d-galactopyranosyl-(1→4)-β-d-glucuronic acid tethered to a d-aspartic acid-derived tetramic acid. Key steps were the synthesis of a fully protected d-lactose derived thioglycoside, its attachment to a C20-aldehyde spacer, functionalization of the latter with a terminal N-(β-ketoacyl)-d-aspartate, and a basic Dieckmann cyclization to close the pyrrolidin-2,4-dione ring with concomitant global deprotection. Ancorinoside B exhibited multiple biological effects of medicinal interest. It inhibited the secretion of the cancer metastasis-relevant matrix metalloproteinases MMP-2 and MMP-9, and also the growth of Staphylococcus aureus biofilms by ca 87% when applied at concentrations as low as 0.5 µg/mL. This concentration is far below its MIC of ca 67 µg/mL and thus unlikely to induce bacterial resistance. It also led to a 67% dispersion of preformed S. aureus biofilms when applied at a concentration of ca 2 µg/mL. Ancorinoside B might thus be an interesting candidate for the control of the general hospital, catheter, or joint protheses infections.
Synthesis and Anticancer Evaluation of New Indole-Based Tyrphostin Derivatives and Their (p-Cymene)dichloridoruthenium(II) Complexes
New N-alkylindole-substituted 2-(pyrid-3-yl)-acrylonitriles with putative kinase inhibitory activity and their (p-cymene)Ru(II) piano-stool complexes were prepared and tested for their antiproliferative efficacy in various cancer models. Some of the indole-based derivatives inhibited tumor cell proliferation at (sub-)micromolar concentrations with IC50 values below those of the clinically relevant multikinase inhibitors gefitinib and sorafenib, which served as positive controls. A focus was set on the investigation of drug mechanisms in HCT-116 p53-knockout colon cancer cells in order to evaluate the dependence of the test compounds on p53. Colony formation assays as well as experiments with tumor spheroids confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic caspase-3/7 activity and ROS formation, as well as anti-angiogenic properties. Docking calculations with EGFR and VEGFR-2 identified the two 3-aryl-2-(pyrid-3-yl)acrylonitrile derivatives 2a and 2b as potential kinase inhibitors with a preferential activity against the VEGFR-2 tyrosine kinase. Forthcoming studies will further unveil the underlying mode of action of the promising new derivatives as well as their suitability as an urgently needed novel approach in cancer treatment.