Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Ochoa-Ricoux, J P"
Sort by:
Neutrino physics with an opaque detector
In 1956 Reines & Cowan discovered the neutrino using a liquid scintillator detector. The neutrinos interacted with the scintillator, producing light that propagated across transparent volumes to surrounding photo-sensors. This approach has remained one of the most widespread and successful neutrino detection technologies used since. This article introduces a concept that breaks with the conventional paradigm of transparency by confining and collecting light near its creation point with an opaque scintillator and a dense array of optical fibres. This technique, called LiquidO, can provide high-resolution imaging to enable efficient identification of individual particles event-by-event. A natural affinity for adding dopants at high concentrations is provided by the use of an opaque medium. With these and other capabilities, the potential of our detector concept to unlock opportunities in neutrino physics is presented here, alongside the results of the first experimental validation. Liquid scintillator detectors have been used to study neutrinos ever since their discovery in 1956. The authors introduce an opaque scintillator detector concept for future neutrino experiments with increased capacity for particle identification and a natural affinity for doping.
Neutrino Physics with an Opaque Detector
In 1956 Reines & Cowan discovered the neutrino using a liquid scintillator detector. The neutrinos interacted with the scintillator, producing light that propagated across transparent volumes to surrounding photo-sensors. This approach has remained one of the most widespread and successful neutrino detection technologies used since. This article introduces a concept that breaks with the conventional paradigm of transparency by confining and collecting light near its creation point with an opaque scintillator and a dense array of optical fibres. This technique, called LiquidO, can provide high-resolution imaging to enable efficient identification of individual particles event-by-event. A natural affinity for adding dopants at high concentrations is provided by the use of an opaque medium. With these and other capabilities, the potential of our detector concept to unlock opportunities in neutrino physics is presented here, alongside the results of the first experimental validation.
Assembly and Installation of the Daya Bay Antineutrino Detectors
The Daya Bay reactor antineutrino experiment is designed to make a precision measurement of the neutrino mixing angle theta13, and recently made the definitive discovery of its nonzero value. It utilizes a set of eight, functionally identical antineutrino detectors to measure the reactor flux and spectrum at baselines of 300 - 2000m from the Daya Bay and Ling Ao Nuclear Power Plants. The Daya Bay antineutrino detectors were built in an above-ground facility and deployed side-by-side at three underground experimental sites near and far from the nuclear reactors. This configuration allows the experiment to make a precision measurement of reactor antineutrino disappearance over km-long baselines and reduces relative systematic uncertainties between detectors and nuclear reactors. This paper describes the assembly and installation of the Daya Bay antineutrino detectors.
Electron neutrino background analysis with the MINOS near detector
The MINOS experiment has the potential to observe electron neutrino appearance for a set of oscillation parameters that has not been excluded by the CHOOZ experiment. However, the observation of this hypothetical signal relies on an accurate understanding of the backgrounds. In order to understand the backgrounds, an analysis of the MINOS near detector energy spectrum, which contains no oscillated signal, is utilized. The results of this analysis can then be extrapolated to the far detector to yield the background estimate. The details of the signal versus background separation methods and the results of this near detector analysis are discussed.
MINOS RESULTS AND PROSPECTS
We report on the updated measurement of muon neutrino disappearance observed in the MINOS detectors. These preliminary results are determined from an exposure of 2.5 × 1020 protons on the NuMI target and incorporate several improvements to our analysis. From a maximum likelihood fit to the reconstructed νµ energy spectra we obtain the neutrino squared-mass difference $|\\Delta m_{32}^2 | = (2.38_{ - 0.16}^{ + 0.20}) \\times 10^{ - 3} {\\rm{eV}}^2 $ and mixing angle sin2(2θ23) = 1.00-0.08 with errors quoted at the 68% confidence level. We also report on the outlook for future analyses such as the searches for electron neutrino appearance and sterile neutrinos, as well as muon anti-neutrino oscillations and transitions.
Report of the Topical Group on Artificial Neutrino Sources for Snowmass 2021
The NF09 topical group was charged with soliciting input to Snowmass on the topic of artificial neutrino sources. In this report, we attempt to catalogue all new or upgraded artificial neutrino sources that are being considered by the global neutrino physics community over the next decade. This report also highlights projects that can improve our knowledge of the fluxes from these sources, which is important to maximize their use.
High Energy Physics Opportunities Using Reactor Antineutrinos
Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade.
Probing Earth's Missing Potassium using the Unique Antimatter Signature of Geoneutrinos
The formation of the Earth remains an epoch with mysterious puzzles extending to our still incomplete understanding of the planet's potential origin and bulk composition. Direct confirmation of the Earth's internal heat engine was accomplished by the successful observation of geoneutrinos originating from uranium (U) and thorium (Th) progenies, manifestations of the planet's natural radioactivity dominated by potassium (40K) and the decay chains of uranium (238U) and thorium (232Th). This radiogenic energy output is critical to planetary dynamics and must be accurately measured for a complete understanding of the overall heat budget and thermal history of the Earth. Detecting geoneutrinos remains the only direct probe to do so and constitutes a challenging objective in modern neutrino physics. In particular, the intriguing potassium geoneutrinos have never been observed and thus far have been considered impractical to measure. We propose here a novel approach for potassium geoneutrino detection using the unique antimatter signature of antineutrinos to reduce the otherwise overwhelming backgrounds to observing this rarest signal. The proposed detection framework relies on the innovative LiquidO detection technique to enable positron (e+) identification and antineutrino interactions with ideal isotope targets identified here for the first time. We also provide the complete experimental methodology to yield the first potassium geoneutrino discovery.
Searches for Baryon Number Violation in Neutrino Experiments: A White Paper
Baryon number conservation is not guaranteed by any fundamental symmetry within the Standard Model, and therefore has been a subject of experimental and theoretical scrutiny for decades. So far, no evidence for baryon number violation has been observed. Large underground detectors have long been used for both neutrino detection and searches for baryon number violating processes. The next generation of large neutrino detectors will seek to improve upon the limits set by past and current experiments and will cover a range of lifetimes predicted by several Grand Unified Theories. In this White Paper, we summarize theoretical motivations and experimental aspects of searches for baryon number violation in neutrino experiments.