Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Odero, Gary"
Sort by:
Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring
Background Birth cohort studies link gestational diabetes mellitus (GDM) with impaired cognitive performance in the offspring. However, the mechanisms involved are unknown. We tested the hypothesis that obesity-associated GDM induces chronic neuroinflammation and disturbs the development of neuronal circuitry resulting in impaired cognitive abilities in the offspring. Methods In rats, GDM was induced by feeding dams a diet high in sucrose and fatty acids. Brains of neonatal (E20) and young adult (15-week-old) offspring of GDM and lean dams were analyzed by immunohistochemistry, cytokine assay, and western blotting. Young adult offspring of GDM and lean dams went also through cognitive assessment. Cultured microglial responses to elevated glucose and/or fatty acids levels were analyzed. Results In rats, impaired recognition memory was observed in the offspring of GDM dams. GDM exposure combined with a postnatal high-fat and sucrose diet resulted in atypical inattentive behavior in the offspring. These cognitive changes correlated with reduced density and derangement of Cornu Ammonis 1 pyramidal neuronal layer, decreased hippocampal synaptic integrity, increased neuroinflammatory status, and reduced expression of CX3CR1, the microglial fractalkine receptor regulating microglial pro-inflammatory responses and synaptic pruning. Primary microglial cultures that were exposed to high concentrations of glucose and/or palmitate were transformed into an activated, amoeboid morphology with increased nitric oxide and superoxide production, and altered their cytokine release profile. Conclusions These findings demonstrate that GDM stimulates microglial activation and chronic inflammatory responses in the brain of the offspring that persist into young adulthood. Reactive gliosis correlates positively with hippocampal synaptic decline and cognitive impairments. The elevated pro-inflammatory cytokine expression at the critical period of hippocampal synaptic maturation suggests that neuroinflammation might drive the synaptic and cognitive decline in the offspring of GDM dams. The importance of microglia in this process is supported by the reduced Cx3CR1 expression as an indication of the loss of microglial control of inflammatory responses and phagocytosis and synaptic pruning in GDM offspring.
NF-κB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus
Background Nuclear factor kappa B (NF-κB) is a transcription factor typically expressed with two specific subunits (p50, p65). Investigators have reported that NF-κB is activated during the induction of in vitro long term potentiation (LTP), a paradigm of synaptic plasticity and correlate of memory, suggesting that NF-κB may be necessary for some aspects of memory encoding. Furthermore, NF-κB has been implicated as a potential requirement in behavioral tests of memory. Unfortunately, very little work has been done to explore the effects of deleting specific NF-κB subunits on memory. Studies have shown that NF-κB p50 subunit deletion (p50 −/− ) leads to memory deficits, however some recent studies suggest the contrary where p50 −/− mice show enhanced memory in the Morris water maze (MWM). To more critically explore the role of the NF-κB p50 subunit in synaptic plasticity and memory, we assessed long term spatial memory in vivo using the MWM, and synaptic plasticity in vitro utilizing high frequency stimuli capable of eliciting LTP in slices from the hippocampus of NF-κB p50 −/− versus their controls (p50 +/+ ). Results We found that the lack of the NF-κB p50 subunit led to significant decreases in late LTP and in selective but significant alterations in MWM tests (i.e., some improvements during acquisition, but deficits during retention). Conclusions These results support the hypothesis that the NF-κ p50 subunit is required in long term spatial memory in the hippocampus.
Visinin-Like Protein-3 Modulates the Interaction Between Cytochrome b 5 and NADH-Cytochrome b 5 Reductase in a Ca2+-Dependent Manner
Visinin-like proteins (VILIPs) belong to the calcium sensor protein family. VILIP-1 has been examined as a cerebrospinal fluid biomarker and as a potential indicator for cognitive decline in Alzheimer's disease (AD). However, little is known about VILIP-3 protein biochemistry. We performed co-immunoprecipitation experiments to examine whether VILIP-3 can interact with reduced nicotine adenine dinucleotide (NADH)-cytochrome b 5 reductase. We also evaluated the specificity of cytochrome b 5 within the visinin-like protein subfamily and identified cytochrome P450 isoforms in the brain. In this study, we show that cytochrome b 5 has an affinity for hippocalcin, neurocalcin-δ, and VILIP-3, but not visinin-like protein-1. VILIP-3 was also shown to interact with NADH-cytochrome b 5 reductase in a Ca2+-dependent manner. These results suggest that VILIP-3, hippocalcin, and neurocalcin-δ provide a Ca2+-dependent modulation to the NADH-dependent microsomal electron transport. The results also suggest that future therapeutic strategies that target calcium-signaling pathways and VILIPs may be of value.Visinin-like proteins (VILIPs) belong to the calcium sensor protein family. VILIP-1 has been examined as a cerebrospinal fluid biomarker and as a potential indicator for cognitive decline in Alzheimer's disease (AD). However, little is known about VILIP-3 protein biochemistry. We performed co-immunoprecipitation experiments to examine whether VILIP-3 can interact with reduced nicotine adenine dinucleotide (NADH)-cytochrome b 5 reductase. We also evaluated the specificity of cytochrome b 5 within the visinin-like protein subfamily and identified cytochrome P450 isoforms in the brain. In this study, we show that cytochrome b 5 has an affinity for hippocalcin, neurocalcin-δ, and VILIP-3, but not visinin-like protein-1. VILIP-3 was also shown to interact with NADH-cytochrome b 5 reductase in a Ca2+-dependent manner. These results suggest that VILIP-3, hippocalcin, and neurocalcin-δ provide a Ca2+-dependent modulation to the NADH-dependent microsomal electron transport. The results also suggest that future therapeutic strategies that target calcium-signaling pathways and VILIPs may be of value.
Visinin-Like Protein-3 Modulates the Interaction Between Cytochrome b5 and NADH-Cytochrome b5 Reductase in a Ca2+-Dependent Manner
Visinin-like proteins (VILIPs) belong to the calcium sensor protein family. VILIP-1 has been examined as a cerebrospinal fluid biomarker and as a potential indicator for cognitive decline in Alzheimer’s disease (AD). However, little is known about VILIP-3 protein biochemistry. We performed co-immunoprecipitation experiments to examine whether VILIP-3 can interact with reduced nicotine adenine dinucleotide (NADH)-cytochrome b 5 reductase. We also evaluated the specificity of cytochrome b 5 within the visinin-like protein subfamily and identified cytochrome P450 isoforms in the brain. In this study, we show that cytochrome b 5 has an affinity for hippocalcin, neurocalcin-δ, and VILIP-3, but not visinin-like protein-1. VILIP-3 was also shown to interact with NADH-cytochrome b 5 reductase in a Ca 2+ -dependent manner. These results suggest that VILIP-3, hippocalcin, and neurocalcin-δ provide a Ca 2+ -dependent modulation to the NADH-dependent microsomal electron transport. The results also suggest that future therapeutic strategies that target calcium-signaling pathways and VILIPs may be of value.
Visinin-Like Protein-3 Modulates the Interaction Between Cytochrome b ^sub 5^ and NADH-Cytochrome b ^sub 5^ Reductase in a Ca^sup 2+^-Dependent Manner
Visinin-like proteins (VILIPs) belong to the calcium sensor protein family. VILIP-1 has been examined as a cerebrospinal fluid biomarker and as a potential indicator for cognitive decline in Alzheimer's disease (AD). However, little is known about VILIP-3 protein biochemistry. We performed co-immunoprecipitation experiments to examine whether VILIP-3 can interact with reduced nicotine adenine dinucleotide (NADH)-cytochrome b 5 reductase. We also evaluated the specificity of cytochrome b 5 within the visinin-like protein subfamily and identified cytochrome P450 isoforms in the brain. In this study, we show that cytochrome b 5 has an affinity for hippocalcin, neurocalcin-δ, and VILIP-3, but not visinin-like protein-1. VILIP-3 was also shown to interact with NADH-cytochrome b 5 reductase in a Ca2+-dependent manner. These results suggest that VILIP-3, hippocalcin, and neurocalcin-δ provide a Ca2+-dependent modulation to the NADH-dependent microsomal electron transport. The results also suggest that future therapeutic strategies that target calcium-signaling pathways and VILIPs may be of value.
Visinin-Like Protein-3 Modulates the Interaction Between Cytochrome b sub(5) and NADH-Cytochrome b sub(5) Reductase in a Ca super(2+)-Dependent Manner
Visinin-like proteins (VILIPs) belong to the calcium sensor protein family. VILIP-1 has been examined as a cerebrospinal fluid biomarker and as a potential indicator for cognitive decline in Alzheimer's disease (AD). However, little is known about VILIP-3 protein biochemistry. We performed co-immunoprecipitation experiments to examine whether VILIP-3 can interact with reduced nicotine adenine dinucleotide (NADH)-cytochrome b sub( )5reductase. We also evaluated the specificity of cytochrome b sub( )5within the visinin-like protein subfamily and identified cytochrome P450 isoforms in the brain. In this study, we show that cytochrome b sub( )5has an affinity for hippocalcin, neurocalcin- delta , and VILIP-3, but not visinin-like protein-1. VILIP-3 was also shown to interact with NADH-cytochrome b sub( )5reductase in a Ca super(2+)-dependent manner. These results suggest that VILIP-3, hippocalcin, and neurocalcin- delta provide a Ca super(2+)-dependent modulation to the NADH-dependent microsomal electron transport. The results also suggest that future therapeutic strategies that target calcium-signaling pathways and VILIPs may be of value.
NF-kappaB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus
Doc number: 45 Abstract Background: Nuclear factor kappa B (NF-κB) is a transcription factor typically expressed with two specific subunits (p50, p65). Investigators have reported that NF-κB is activated during the induction of in vitro long term potentiation (LTP), a paradigm of synaptic plasticity and correlate of memory, suggesting that NF-κB may be necessary for some aspects of memory encoding. Furthermore, NF-κB has been implicated as a potential requirement in behavioral tests of memory. Unfortunately, very little work has been done to explore the effects of deleting specific NF-κB subunits on memory. Studies have shown that NF-κB p50 subunit deletion (p50-/- ) leads to memory deficits, however some recent studies suggest the contrary where p50-/- mice show enhanced memory in the Morris water maze (MWM). To more critically explore the role of the NF-κB p50 subunit in synaptic plasticity and memory, we assessed long term spatial memory in vivo using the MWM, and synaptic plasticity in vitro utilizing high frequency stimuli capable of eliciting LTP in slices from the hippocampus of NF-κB p50-/- versus their controls (p50+/+ ). Results: We found that the lack of the NF-κB p50 subunit led to significant decreases in late LTP and in selective but significant alterations in MWM tests (i.e., some improvements during acquisition, but deficits during retention). Conclusions: These results support the hypothesis that the NF-κ p50 subunit is required in long term spatial memory in the hippocampus.
Visinin-Like Protein-3 Modulates the Interaction Between Cytochrome b 5 and NADH-Cytochrome b 5 Reductase in a Ca 2+ -Dependent Manner
Visinin-like proteins (VILIPs) belong to the calcium sensor protein family. VILIP-1 has been examined as a cerebrospinal fluid biomarker and as a potential indicator for cognitive decline in Alzheimer's disease (AD). However, little is known about VILIP-3 protein biochemistry. We performed co-immunoprecipitation experiments to examine whether VILIP-3 can interact with reduced nicotine adenine dinucleotide (NADH)-cytochrome b reductase. We also evaluated the specificity of cytochrome b within the visinin-like protein subfamily and identified cytochrome P450 isoforms in the brain. In this study, we show that cytochrome b has an affinity for hippocalcin, neurocalcin-δ, and VILIP-3, but not visinin-like protein-1. VILIP-3 was also shown to interact with NADH-cytochrome b reductase in a Ca -dependent manner. These results suggest that VILIP-3, hippocalcin, and neurocalcin-δ provide a Ca -dependent modulation to the NADH-dependent microsomal electron transport. The results also suggest that future therapeutic strategies that target calcium-signaling pathways and VILIPs may be of value.
Roles for NF-kB in Regulating Gene Expression in Synaptic Plasticity and Memory
Changing the strength of synaptic connections between neurons is a process by which memory traces are encoded and stored in the nervous system. Evidence to date suggests that long term memory encoding and storage are dependent on mRNA translation and protein synthesis. Studies over the years have identified key signaling molecules involved in processes of protein synthesis in contexts of long term memory. Transcription factors, such as cAMP response element binding (CREB) protein, CCAAT/enhancer binding protein (C/EBP), early growth response (Egr) protein, activator protein 1 (AP-1), and nuclear factor kappa B (NF-kB) have been hypothesized to play roles in memory suggesting that these molecules function as part of a sophisticated response for processes of protein synthesis in long term memory. Previous studies have shown roles for some of these proteins in CNS disorders, where a rapidly growing literature supports the involvement of NF-kB, not only in neurodegenerative conditions, but also in synaptic plasticity and memory.
“You’ll Be Chased Away”: Sources, Experiences, and Effects of Violence and Stigma among Gay and Bisexual Men in Kenya
Gay and bisexual men in Kenya face extreme socio-political stigma which manifests in widespread violence and discrimination across socio-ecological levels. We conducted individual in-depth interviews with 60 gay and bisexual men in western and central Kenya. Interview transcripts were thematically analyzed using an inductive, phenomenological approach to qualitatively examine experiences of stigma and violence at the interpersonal and institutional levels. A total of seven primary themes and four sub-themes emerged from the data. At the interpersonal level, participants described stigma and violence from family, friends, and romantic/sexual partners with sub-themes for gay-baiting violence, blackmail, intimate partner violence, and commitment phobia. At the institutional level, participants described stigma and violence from religious, employment, educational, and healthcare institutions. This stigma and violence severely impacted the lives of participants including their mental health, physical health, sexual health, socioeconomic status, and ability to access health-promoting services. These data identify sources of stigma and describe how this stigma manifests in the everyday lives of gay and bisexual men in Kenya. Study findings and quotes from participants highlight the severity of violence, stigma, and discrimination faced by this community and emphasize the need for decriminalization of same-sex sexualities as well as interventions to support health and wellbeing.