Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
141
result(s) for
"Oefner, Peter J"
Sort by:
Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice
by
Lamond, Angus I.
,
Loftus, Róisín M.
,
Sinclair, Linda V.
in
38/77
,
631/250/127/1213
,
631/250/1619/382
2018
Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system
l
-amino acid transport is blocked. We identify SLC7A5 as the predominant system
l
-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.
Glutamine can feed into the TCA cycle as a fuel for oxidative phosphorylation and thereby can affect metabolic pathways in lymphocytes. Yet here the authors show that glutamine serves predominantly as a signalling molecule that sustains cMyc expression to control NK cell metabolism and effector function.
Journal Article
Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages
2021
Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using
Arg2
−/−
mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.
IL-10 can limit inflammation in part by inhibiting miR-155. Here the authors show how this axis induces mitochondrial arginase-2 to alter the mitochondrial dynamics and bioenergetics of macrophages and make these cells less pro-inflammatory.
Journal Article
Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans
2020
The kidneys integrate information from continuous systemic processes related to the absorption, distribution, metabolism and excretion (ADME) of metabolites. To identify underlying molecular mechanisms, we performed genome-wide association studies of the urinary concentrations of 1,172 metabolites among 1,627 patients with reduced kidney function. The 240 unique metabolite–locus associations (metabolite quantitative trait loci, mQTLs) that were identified and replicated highlight novel candidate substrates for transport proteins. The identified genes are enriched in ADME-relevant tissues and cell types, and they reveal novel candidates for biotransformation and detoxification reactions. Fine mapping of mQTLs and integration with single-cell gene expression permitted the prioritization of causal genes, functional variants and target cell types. The combination of mQTLs with genetic and health information from 450,000 UK Biobank participants illuminated metabolic mediators, and hence, novel urinary biomarkers of disease risk. This comprehensive resource of genetic targets and their substrates is informative for ADME processes in humans and is relevant to basic science, clinical medicine and pharmaceutical research.
Genome-wide association analysis of 1,172 urinary metabolites identifies 240 metabolite–locus associations that when combined with UK Biobank data suggest novel metabolic mediators of disease and markers of disease risk.
Journal Article
Arginase impedes the resolution of colitis by altering the microbiome and metabolome
by
Lukassen, Sören
,
Tripal, Philipp
,
Bogdan, Christian
in
Animals
,
Arginase
,
Arginase - genetics
2020
Arginase 1 (Arg1), which converts l-arginine into ornithine and urea, exerts pleiotropic immunoregulatory effects. However, the function of Arg1 in inflammatory bowel disease (IBD) remains poorly characterized. Here, we found that Arg1 expression correlated with the degree of inflammation in intestinal tissues from IBD patients. In mice, Arg1 was upregulated in an IL-4/IL-13- and intestinal microbiota-dependent manner. Tie2-Cre Arg1fl/fl mice lacking Arg1 in hematopoietic and endothelial cells recovered faster from colitis than Arg1-expressing (Arg1fl/fl) littermates. This correlated with decreased vessel density, compositional changes in intestinal microbiota, diminished infiltration by myeloid cells, and an accumulation of intraluminal polyamines that promote epithelial healing. The proresolving effect of Arg1 deletion was reduced by an l-arginine-free diet, but rescued by simultaneous deletion of other l-arginine-metabolizing enzymes, such as Arg2 or Nos2, demonstrating that protection from colitis requires l-arginine. Fecal microbiota transfers from Tie2-Cre Arg1fl/fl mice into WT recipients ameliorated intestinal inflammation, while transfers from WT littermates into Arg1-deficient mice prevented an advanced recovery from colitis. Thus, an increased availability of l-arginine as well as altered intestinal microbiota and metabolic products accounts for the accelerated resolution from colitis in the absence of Arg1. Consequently, l-arginine metabolism may serve as a target for clinical intervention in IBD patients.
Journal Article
Adjusting microbiome profiles for differences in microbial load by spike-in bacteria
2016
Background
Next-generation 16S ribosomal RNA gene sequencing is widely used to determine the relative composition of the mammalian gut microbiomes. However, in the absence of a reference, this does not reveal alterations in absolute abundance of specific operational taxonomic units if microbial loads vary across specimens.
Results
Here we suggest the spiking of exogenous bacteria into crude specimens to quantify ratios of absolute bacterial abundances. We use the 16S rDNA read counts of the spike-in bacteria to adjust the read counts of endogenous bacteria for changes in total microbial loads. Using a series of dilutions of pooled faecal samples from mice containing defined amounts of the spike-in bacteria
Salinibacter ruber
,
Rhizobium radiobacter
and
Alicyclobacillus acidiphilus
, we demonstrate that spike-in-based calibration to microbial loads allows accurate estimation of ratios of absolute endogenous bacteria abundances. Applied to stool specimens of patients undergoing allogeneic stem cell transplantation, we were able to determine changes in both relative and absolute abundances of various phyla, especially the genus
Enterococcus,
in response to antibiotic treatment and radio-chemotherapeutic conditioning.
Conclusion
Exogenous spike-in bacteria in gut microbiome studies enable estimation of ratios of absolute OTU abundances, providing novel insights into the structure and the dynamics of intestinal microbiomes.
Journal Article
State-of-the art data normalization methods improve NMR-based metabolomic analysis
by
Spang, Rainer
,
Hochrein, Jochen
,
Gronwald, Wolfram
in
Biochemistry
,
Biomedical and Life Sciences
,
Biomedicine
2012
Extracting biomedical information from large metabolomic datasets by multivariate data analysis is of considerable complexity. Common challenges include among others screening for differentially produced metabolites, estimation of fold changes, and sample classification. Prior to these analysis steps, it is important to minimize contributions from unwanted biases and experimental variance. This is the goal of data preprocessing. In this work, different data normalization methods were compared systematically employing two different datasets generated by means of nuclear magnetic resonance (NMR) spectroscopy. To this end, two different types of normalization methods were used, one aiming to remove unwanted sample-to-sample variation while the other adjusts the variance of the different metabolites by variable scaling and variance stabilization methods. The impact of all methods tested on sample classification was evaluated on urinary NMR fingerprints obtained from healthy volunteers and patients suffering from autosomal polycystic kidney disease (ADPKD). Performance in terms of screening for differentially produced metabolites was investigated on a dataset following a Latin-square design, where varied amounts of 8 different metabolites were spiked into a human urine matrix while keeping the total spike-in amount constant. In addition, specific tests were conducted to systematically investigate the influence of the different preprocessing methods on the structure of the analyzed data. In conclusion, preprocessing methods originally developed for DNA microarray analysis, in particular, Quantile and Cubic-Spline Normalization, performed best in reducing bias, accurately detecting fold changes, and classifying samples.
Journal Article
MCT4 blockade increases the efficacy of immune checkpoint blockade
by
Babl, Nathalie
,
Sala-Hojman, Ada
,
Dettmer, Katja
in
Acidification
,
Acidosis
,
Basic Tumor Immunology
2023
Background & AimsIntratumoral lactate accumulation and acidosis impair T-cell function and antitumor immunity. Interestingly, expression of the lactate transporter monocarboxylate transporter (MCT) 4, but not MCT1, turned out to be prognostic for the survival of patients with rectal cancer, indicating that single MCT4 blockade might be a promising strategy to overcome glycolysis-related therapy resistance.MethodsTo determine whether blockade of MCT4 alone is sufficient to improve the efficacy of immune checkpoint blockade (ICB) therapy, we examined the effects of the selective MCT1 inhibitor AZD3965 and a novel MCT4 inhibitor in a colorectal carcinoma (CRC) tumor spheroid model co-cultured with blood leukocytes in vitro and the MC38 murine CRC model in vivo in combination with an antibody against programmed cell death ligand-1(PD-L1).ResultsInhibition of MCT4 was sufficient to reduce lactate efflux in three-dimensional (3D) CRC spheroids but not in two-dimensional cell-cultures. Co-administration of the MCT4 inhibitor and ICB augmented immune cell infiltration, T-cell function and decreased CRC spheroid viability in a 3D co-culture model of human CRC spheroids with blood leukocytes. Accordingly, combination of MCT4 and ICB increased intratumoral pH, improved leukocyte infiltration and T-cell activation, delayed tumor growth, and prolonged survival in vivo. MCT1 inhibition exerted no further beneficial impact.ConclusionsThese findings demonstrate that single MCT4 inhibition represents a novel therapeutic approach to reverse lactic-acid driven immunosuppression and might be suitable to improve ICB efficacy.
Journal Article
Rare genetic variants affecting urine metabolite levels link population variation to inborn errors of metabolism
2021
Metabolite levels in urine may provide insights into genetic mechanisms shaping their related pathways. We therefore investigate the cumulative contribution of rare, exonic genetic variants on urine levels of 1487 metabolites and 53,714 metabolite ratios among 4864 GCKD study participants. Here we report the detection of 128 significant associations involving 30 unique genes, 16 of which are known to underlie inborn errors of metabolism. The 30 genes are strongly enriched for shared expression in liver and kidney (odds ratio = 65, p-FDR = 3e−7), with hepatocytes and proximal tubule cells as driving cell types. Use of UK Biobank whole-exome sequencing data links genes to diseases connected to the identified metabolites. In silico constraint-based modeling of gene knockouts in a virtual whole-body, organ-resolved metabolic human correctly predicts the observed direction of metabolite changes, highlighting the potential of linking population genetics to modeling. Our study implicates candidate variants and genes for inborn errors of metabolism.
Metabolites are indicators of health and disease; genetic studies can reveal variants influencing their levels. Here, the authors investigate the contribution of rare, exonic variants on the levels of urine metabolites and generate predictions on metabolic consequences underlying metabolic disease.
Journal Article
New Aspects of an Old Drug – Diclofenac Targets MYC and Glucose Metabolism in Tumor Cells
by
Andreesen, Reinhard
,
Grauer, Oliver
,
Gottfried, Eva
in
Accumulation
,
Animals
,
Anti-inflammatory agents
2013
Non-steroidal anti-inflammatory drugs such as diclofenac exhibit potent anticancer effects. Up to now these effects were mainly attributed to its classical role as COX-inhibitor. Here we show novel COX-independent effects of diclofenac. Diclofenac significantly diminished MYC expression and modulated glucose metabolism resulting in impaired melanoma, leukemia, and carcinoma cell line proliferation in vitro and reduced melanoma growth in vivo. In contrast, the non-selective COX inhibitor aspirin and the COX-2 specific inhibitor NS-398 had no effect on MYC expression and glucose metabolism. Diclofenac significantly decreased glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 1 (MCT1) gene expression in line with a decrease in glucose uptake and lactate secretion. A significant intracellular accumulation of lactate by diclofenac preceded the observed effect on gene expression, suggesting a direct inhibitory effect of diclofenac on lactate efflux. While intracellular lactate accumulation impairs cellular proliferation and gene expression, it does not inhibit MYC expression as evidenced by the lack of MYC regulation by the MCT inhibitor α-cyano-4-hydroxycinnamic acid. Finally, in a cell line with a tetracycline-regulated c-MYC gene, diclofenac decreased proliferation both in the presence and absence of c-MYC. Thus, diclofenac targets tumor cell proliferation via two mechanisms, that is inhibition of MYC and lactate transport. Based on these results, diclofenac holds potential as a clinically applicable MYC and glycolysis inhibitor supporting established tumor therapies.
Journal Article
Denaturing high-performance liquid chromatography: A review
by
Oefner, Peter J.
,
Xiao, Wenzhong
in
association studies
,
Base Sequence
,
Chromatography, High Pressure Liquid
2001
Denaturing high‐performance liquid chromatography (DHPLC) compares two or more chromosomes as a mixture of denatured and reannealed PCR amplicons, revealing the presence of a mutation by the differential retention of homo‐ and heteroduplex DNA on reversed‐phase chromatography supports under partial denaturation. Temperature determines sensitivity, and its optimum can be predicted by computation. Single‐nucleotide substitutions, deletions, and insertions have been detected successfully by on‐line UV or fluorescence monitoring within 2–3 minutes in unpurified amplicons as large as 1.5 Kb. Sensitivity and specificity of DHPLC consistently exceed 96%. These features and its low cost make DHPLC one of the most powerful tools for the re‐sequencing of the human and other genomes. Aside from its application to the mutational analysis of candidate genes, DHPLC has proven instrumental in elucidating human evolution and in the mapping of genes. Employing completely denaturing conditions, the utility of DHPLC has been extended to the genotyping of known polymorphisms by utilizing the ability of poly(styrene‐divinylbenzene) to resolve single‐stranded DNA molecules of identical size that differ in a single base. Under completely denaturing conditions, it is thus possible to resolve all possible base substitutions with the single exception of C→G transversions. Improvements in throughput became feasible with the recent introduction of monolithic poly(styrene‐divinylbenzene) capillaries that lend themselves to the fabrication of arrays connected to a multi‐color laser induced fluorescence scanner or a mass spectrometer. Hum Mutat 17:439–474, 2001. © 2001 Wiley‐Liss, Inc.
Journal Article