Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
508 result(s) for "Ogawa, Yasuhiro"
Sort by:
Oral bacteria affect the gut microbiome and intestinal immunity
ABSTRACT Recently, it has been suggested that the oral administration of Porphyromonas gingivalis, a keystone pathogen for periodontal disease, induces dysbiosis of the mouse intestinal microbiota and affects intestinal barrier function. Since oral streptococci are the predominant oral bacterial group, we compared the effect of their oral administration on the intestinal tract compared to that of P. gingivalis. Swallowing oral bacteria caused gut dysbiosis, due to increased Bacteroides and Staphylococcus and decreased Lactobacillus spp. Furthermore, oral bacterial infection caused an increase in lactate and decreases in succinate and n-butyrate contents. In the small intestine, the decrease in Th17 cells was considered to be a result of oral bacterial infection, although the population of Treg cells remained unaffected. In addition, oral bacterial challenge increased the M1/M2 macrophage ratio and decreased the immunoglobulin A (IgA) antibody titer in feces. These results suggest that gut dysbiosis caused by oral bacteria may cause a decrease in Th17 cells and fecal IgA levels and an increase in the M1/M2 macrophage ratio, thereby promoting chronic inflammation. Gut dysbiosis caused by oral bacteria causes a decrease in Th17 cell and fecal IgA levels as well as an increase in the M1/M2 macrophage ratio, promoting chronic inflammation.
Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models
Narcolepsy-cataplexy is a debilitating disorder of sleep/wakefulness caused by a loss of orexin-producing neurons in the lateroposterior hypothalamus. Genetic or pharmacologic orexin replacement ameliorates symptoms in mouse models of narcolepsy-cataplexy. We have recently discovered a potent, nonpeptide OX2R-selective agonist, YNT-185. This study validates the pharmacological activity of this compound in OX2R-transfected cells and in OX2R-expressing neurons in brain slice preparations. Intraperitoneal, and intracerebroventricular, administration of YNT-185 suppressed cataplexy-like episodes in orexin knockout and orexin neuron-ablatedmice, but not in orexin receptor-deficient mice. Peripherally administered YNT- 185 also promotes wakefulness without affecting body temperature in wild-type mice. Further, there was no immediate rebound sleep after YNT-185 administration in active phase in wild-type and orexin-deficient mice. No desensitization was observed after repeated administration of YNT-185 with respect to the suppression of cataplexy-like episodes. These results provide a proof-of-concept for a mechanistic therapy of narcolepsy-cataplexy by OX2R agonists.
Histamine H1 Receptor-Mediated JNK Phosphorylation Is Regulated by Gq Protein-Dependent but Arrestin-Independent Pathways
Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.
Novel protocol combining physical and nutrition therapies, Intensive Goal-directed REhabilitation with Electrical muscle stimulation and Nutrition (IGREEN) care bundle
Background Although the combination of rehabilitation and nutrition may be important for the prevention of intensive care unit (ICU)-acquired weakness, a protocolized intervention of this combination has not yet been reported. We herein developed an original combined protocol and evaluated its efficacy. Methods In this single-center historical control study, we enrolled adult patients admitted to the ICU. Patients in the control group received standard care, while those in the intervention group received the protocol-based intervention. The ICU mobility scale was used to set goals for early mobilization and a neuromuscular electrical stimulation was employed when patients were unable to stand. The nutritional status was assessed for nutritional therapy, and target calorie delivery was set at 20 or 30 kcal/kg/day and target protein delivery at 1.8 g/kg/day in the intervention group. The primary endpoint was a decrease in femoral muscle volume in 10 days assessed by computed tomography. Results Forty-five patients in the control group and 56 in the intervention group were included in the analysis. Femoral muscle volume loss was significantly lower in the intervention group (11.6 vs 14.5%, p  = 0.03). The absolute risk difference was 2.9% (95% CI 0.1–5.6%). Early mobilization to a sitting position by day 10 was achieved earlier ( p  = 0.03), and mean calorie delivery (20.1 vs. 16.8 kcal/kg/day, p  = 0.01) and mean protein delivery (1.4 vs. 0.8 g/kg/day, p  < 0.01) were higher in the intervention group. Conclusion The protocolized intervention, combining early mobilization and high-protein nutrition, contributed to the achievement of treatment goals and prevention of femoral muscle volume loss. Trial registration number The present study is registered at the University Hospital Medical Information Network-clinical trials registry (UMIN000040290, Registration date: May 7, 2020).
Case Report: Reduced CSF Orexin Levels in a Patient With Sepsis
Sepsis is a potentially lethal condition characterized by systemic inflammation and multiple organ failure, and sepsis-associated encephalopathy (SAE) is an independent risk factor for mortality in patients with sepsis. We previously reported that orexin improved survival in an animal model of sepsis by acting in the brain. Peripherally administered orexin entered the brain under the conditions of systemic inflammation because of BBB dysfunction and produced survival-related effects. As a therapeutic concept, we hypothesized that orexin treatment enhances recovery from sepsis by restoring reduced orexin levels in cerebrospinal fluid (CSF). Here, we report that CSF orexin levels were reduced in a 63-year-old woman with sepsis. The patient presented with coma, fever, headache, vomiting, and seizures upon arrival at the emergency room. She had a history of subarachnoid hemorrhage which led to the development of hydrocephalus, and as a consequence, a ventriculoperitoneal shunt (VP shunt) tube had been installed to ameliorate the complication. Physical examinations showed dehydration and abnormality of circulation, arterial blood gas analysis showed insufficient oxygenation, blood tests showed an inflammatory response, liver injury, kidney injury, hyperkalemia, and hyperglycemia, and radio graphical examinations showed mild hydrocephalus and several old microinfarctions. She was diagnosed with sepsis because her Sequential Organ Failure Assessment (SOFA) score was 13 and Enterococcus faecalis was isolated form her blood and CSF. Status epilepticus, hyperglycemia, and sepsis-associated encephalopathy were considered possible causes of coma. Her CSF could be safely sampled because she had a VP shunt, although it is ethically difficult to sample CSF routinely from patients with sepsis. Reduced CSF orexin levels gradually recovered as she recovered from sepsis. Unexpectedly, orexin was detected in the blood, which is unusual in healthy humans. Blood orexin was not detected after recovery from sepsis. This result may imply that orexin leaks into the blood because of BBB dysfunction. To the best of our knowledge, this is the first report investigating orexin levels in the CSF and blood of a patient with sepsis, and the data obtained from this case may provide a new understanding of the pathophysiology of SAE.
Achieving a Good Response in Myxofibrosarcoma With Uncontrollable Bleeding Using an Enzyme-Targeting Radiosensitization Treatment: A Case Report
Myxofibrosarcoma is one of the most prevalent histological types of primary malignant soft tissue tumors of the extremity. Radiation therapy is frequently employed as a post-operative treatment. In this case report, we present a 78-year-old male with a large tumor on his forearm. He refused surgical treatment. Over a period of seven years, recurrence and bleeding were repeatedly observed. Kochi oxydol radiation therapy for unresectable carcinomas (KORTUC) is a treatment modality that uses a hydrogen peroxide solution that adheres to the tumor surface (KORUTC I), while the solution is also injected into the tumor (KORTUC II). We treated the tumor with KORTUC I and II. A good response was observed. This case report highlights the effectiveness of KORTUC I and II. Reports on KORTUC for sarcomas are limited, underscoring the necessity for future examination of cases not indicated for surgical intervention.
Reduced CSF orexin levels in rats and patients with systemic inflammation: a preliminary study
Objective Sepsis is a lethal condition characterized by systemic inflammation and multiple organ failure; this condition was initially defined as systemic inflammatory response syndrome (SIRS) due to infection. We previously reported that the hypothalamic neuropeptide orexin improved survival in a murine model of sepsis by mainly acting in the medullary raphe nucleus through orexin type-2 receptors. We hypothesized that orexin treatment enhances recovery from sepsis by reversing the reduction in orexin levels in the cerebrospinal fluid (CSF). We recently reported a case in which CSF orexin levels were reduced in a patient with sepsis. Herein, we attempted to further investigate CSF orexin levels in rats and patients with systemic inflammation. This patient study was a single-center, retrospective observational study. Results CSF orexin levels were low in rats with lipopolysaccharide-induced systemic inflammation. We enrolled 14 patients with meningitis/encephalitis. Six patients were diagnosed with SIRS, of whom 5 patients had infections (“sepsis” by the previous definition). CSF orexin levels were low in SIRS patients. The results support the hypothesis that orexin treatment enhances recovery from sepsis by reversing the reduction in CSF orexin levels.
Peripherally administered orexin improves survival of mice with endotoxin shock
Sepsis is a systemic inflammatory response to infection, accounting for the most common cause of death in intensive care units. Here, we report that peripheral administration of the hypothalamic neuropeptide orexin improves the survival of mice with lipopolysaccharide (LPS) induced endotoxin shock, a well-studied septic shock model. The effect is accompanied by a suppression of excessive cytokine production and an increase of catecholamines and corticosterone. We found that peripherally administered orexin penetrates the blood-brain barrier under endotoxin shock, and that central administration of orexin also suppresses the cytokine production and improves the survival, indicating orexin's direct action in the central nervous system (CNS). Orexin helps restore body temperature and potentiates cardiovascular function in LPS-injected mice. Pleiotropic modulation of inflammatory response by orexin through the CNS may constitute a novel therapeutic approach for septic shock.
Abnormal differentiation of Sandhoff disease model mouse-derived multipotent stem cells toward a neural lineage
In Sandhoff disease (SD), the activity of the lysosomal hydrolytic enzyme, β-hexosaminidase (Hex), is lost due to a Hexb gene defect, which results in the abnormal accumulation of the substrate, GM2 ganglioside (GM2), in neuronal cells, causing neuronal loss, microglial activation, and astrogliosis. We established induced pluripotent stem cells from the cells of SD mice (SD-iPSCs). In the present study, we investigated the occurrence of abnormal differentiation and development of a neural lineage in the asymptomatic phase of SD in vitro using SD mouse fetus-derived neural stem cells (NSCs) and SD-iPSCs. It was assumed that the number of SD mouse fetal brain-derived NSCs was reduced and differentiation was promoted, resulting in the inhibition of differentiation into neurons and enhancement of differentiation into astrocytes. The number of SD-iPSC-derived NSCs was also reduced, suggesting that the differentiation of NSCs was promoted, resulting in the inhibition of differentiation into neurons and enhancement of that into astrocytes. This abnormal differentiation of SD-iPSCs toward a neural lineage was reduced by the glucosylceramide synthase inhibitor, miglustat. Furthermore, abnormal differentiation toward a neural lineage was reduced in SD-iPSCs with Hexb gene transfection. Therefore, differentiation ability along the time axis appears to be altered in SD mice in which the differentiation ability of NSCs is promoted and differentiation into neurons is completed earlier, while the timing of differentiation into astrocytes is accelerated. These results clarified that the abnormal differentiation of SD-iPSCs toward a neural lineage in vitro was shown to reflect the pathology of SD.
The effect of off-label use of reduced-dose direct oral anticoagulants therapy in the treatment of pulmonary embolism comparable to standard-dose therapy
Direct oral anticoagulants (DOACs) have been shown to be effective and safe in preventing pulmonary embolism recurrence. In this single-center retrospective observational study, we aimed to evaluate the efficacy and safety of reduced-dose DOACs in 86 consecutive patients with acute pulmonary embolism. Patients were divided into standard-dose and reduced-dose DOACs groups. Initial clot volume did not significantly differ between the two groups (standard-dose DOACs vs. reduced-dose DOACs, 18.8 [Q1–Q3 7.3–30.8] mL vs. 10.0 [Q1–Q3 3.2–27.9] mL, p = 0.1). Follow-up computed tomography (CT) within 30 days showed a higher rate of clot volume reduction or disappearance in the standard-dose group compared to the reduced-dose group (standard-dose DOACs vs. reduced-dose DOACs, 81.6% vs. 53.9%, p = 0.02). However, at the final follow-up CT, there was no significant difference in clot volume change between the two groups (standard-dose DOACs vs. reduced-dose DOACs, 91.5% vs. 82.0%, p = 0.19). Major bleeding occurred in two patients in the standard-dose group (4.3%) and three patients in the reduced-dose DOACs group (7.7%) (p = 0.5). In conclusion, while standard-dose DOACs demonstrated superior efficacy in early clot reduction, reduced doses of apixaban and edoxaban showed comparable efficacy and safety profiles in long-term treatment of acute pulmonary embolism in certain patients.