Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
41 result(s) for "Ogawa Tsuneo"
Sort by:
Cardiac natriuretic peptides
Investigations into the mixed muscle–secretory phenotype of cardiomyocytes from the atrial appendages of the heart led to the discovery that these cells produce, in a regulated manner, two polypeptide hormones — the natriuretic peptides — referred to as atrial natriuretic factor or atrial natriuretic peptide (ANP) and brain or B-type natriuretic peptide (BNP), thereby demonstrating an endocrine function for the heart. Studies on the gene encoding ANP (NPPA) initiated the field of modern research into gene regulation in the cardiovascular system. Additionally, ANP and BNP were found to be the natural ligands for cell membrane-bound guanylyl cyclase receptors that mediate the effects of natriuretic peptides through the generation of intracellular cGMP, which interacts with specific enzymes and ion channels. Natriuretic peptides have many physiological actions and participate in numerous pathophysiological processes. Important clinical entities associated with natriuretic peptide research include heart failure, obesity and systemic hypertension. Plasma levels of natriuretic peptides have proven to be powerful diagnostic and prognostic biomarkers of heart disease. Development of pharmacological agents that are based on natriuretic peptides is an area of active research, with vast potential benefits for the treatment of cardiovascular disease.The heart is an endocrine organ, producing atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in a regulated manner. In this Review, the authors discuss the physiological regulation and actions of the cardiac natriuretic peptides and their clinical use as powerful diagnostic and prognostic biomarkers of heart disease.
Utility of CT texture analysis to differentiate olfactory neuroblastoma from sinonasal squamous cell carcinoma
The purpose of this study was to examine differences in texture features between olfactory neuroblastoma (ONB) and sinonasal squamous cell carcinoma (SCC) on contrast-enhanced CT (CECT) images, and to evaluate the predictive accuracy of texture analysis compared to radiologists’ interpretations. Forty-three patients with pathologically-diagnosed primary nasal and paranasal tumor (17 ONB and 26 SCC) were included. We extracted 42 texture features from tumor regions on CECT images obtained before treatment. In univariate analysis, each texture features were compared, with adjustment for multiple comparisons. In multivariate analysis, the elastic net was used to select useful texture features and to construct a texture-based prediction model with leave-one-out cross-validation. The prediction accuracy was compared with two radiologists’ visual interpretations. In univariate analysis, significant differences were observed for 28 of 42 texture features between ONB and SCC, with areas under the receiver operating characteristic curve between 0.68 and 0.91 (median: 0.80). In multivariate analysis, the elastic net model selected 18 texture features that contributed to differentiation. It tended to show slightly higher predictive accuracy than radiologists’ interpretations (86% and 74%, respectively; P  = 0.096). In conclusion, several texture features contributed to differentiation of ONB from SCC, and the texture-based prediction model was considered useful.
Prediction of prognosis in patients with severe COVID-19 pneumonia using CT score by emergency physicians: a single-center retrospective study
We aimed to develop a method to determine the CT score that can be easily obtained from CT images and examine its prognostic value for severe COVID pneumonia. Patients with COVID pneumonia who required ventilatory management by intubation were included. CT score was based on anatomical information in axial CT images and were divided into three sections of height from the apex to the bottom. The extent of pneumonia in each section was rated from 0 to 5 and summed. The primary outcome was the prediction of patients who died or were managed on extracorporeal membrane oxygenation (ECMO) based on the CT score at admission. Of the 71 patients included, 12 (16.9%) died or required ECMO management, and the CT score predicted death or ECMO management with ROC of 0.718 (0.561–0.875). The death or ECMO versus survival group (median [quartiles]) had a CT score of 17.75 (14.75–20) versus 13 (11–16.5), p  = 0.017. In conclusion, a higher score on our generated CT score could predict the likelihood of death or ECMO management. A CT score at the time of admission allows for early preparation and transfer to a hospital that can manage patients who may need ECMO.
Highly porous nature of a primitive asteroid revealed by thermal imaging
Carbonaceous (C-type) asteroids 1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites 2 , 3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth’s atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR) 4 onboard the spacecraft Hayabusa2 5 , indicating that the asteroid’s boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m −2  s −0.5  K −1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites 6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect 7 , 8 . We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites 6 . These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity 9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies 10 . Thermal imaging data obtained from the spacecraft Hayabusa2 reveal that the carbonaceous asteroid 162173 Ryugu is an object of unusually high porosity.
Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2
The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011 ). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12 ∘ and a spatial resolution of 0.05 ∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014 ), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.
Possible mantle origin of olivine around lunar impact basins detected by SELENE
The composition, structure and evolution of the Moon’s mantle is poorly constrained. A global survey of the Moon’s surface, using the spectral profiler onboard the lunar explorer SELENE/Kaguya, identifies a number of exposures of olivine in concentric regions around lunar craters, with a possible mantle origin. The composition, structure and evolution of the Moon’s mantle is poorly constrained. The mineral olivine, one of the main constituents of Earth’s mantle, has been identified by Earth-based telescopic observations at two craters on the near side of the Moon, Aristarchus and Copernicus 1 , 2 , 3 . Global reflectance spectra in five discrete spectral bands produced by the spacecraft Clementine 4 , 5 , 6 suggested several possible olivine-bearing sites, but one of the candidate occurrences of olivine was later re-classified, on the basis of continuous reflectance spectra over the entire 1 μm band, as a mixture of plagioclase and pyroxene 7 . Here we present a global survey of the lunar surface using the Spectral Profiler onboard the lunar explorer SELENE/Kaguya 7 , 8 . We found many exposures of olivine on the Moon, located in concentric regions around the South Pole-Aitken, Imbrium and Moscoviense impact basins where the crust is relatively thin. We propose that these exposures of olivine can be attributed either to an excavation of the lunar mantle at the time of the impacts that formed the basins 3 , or to magnesium-rich pluton in the Moon’s lower crust. On the basis of radiative transfer modelling 4 , 8 , 9 , 10 , we suggest that at least some of the olivine detected near impact basins originates from upper mantle of the Moon.
The global distribution of pure anorthosite on the Moon
Pure lunar anorthosite Based on analyses of lunar samples of anorthosite, the igneous rock made up mainly of plagioclase feldspar that predominates there, the light-coloured crust of the lunar highlands is thought to have been formed by the crystallization and flotation of plagioclase from a global magma ocean. The exact mechanism by which such a crust formed remains a matter for debate. Spectroscopic data from SELENE, the main orbiter component of the Japanese KAGUYA lunar mission, have now been used to produce a clear and high spatial resolution view of the composition of the lunar crust. The data, from 69 different locations, reveal the widespread existence of virtually pure —100% plagioclase — anorthosite. This contrasts to previous estimates of 82 to 92 vol% plagioclase, providing a valuable constraint on models of lunar magma ocean evolution. It has long been thought that the lunar highland crust was formed by the crystallization and floatation of plagioclase from a global magma ocean, but the exact mechanism by which such a crust formed remains debated. Data from the Japanese SELENE spacecraft are now used to produce a clear and high spatial resolution view of the composition of the lunar crust. The existence of widely distributed crustal rocks with compositions approaching 100 per cent (by volume) plagioclase is revealed. It has been thought that the lunar highland crust was formed by the crystallization and floatation of plagioclase from a global magma ocean 1 , 2 , although the actual generation mechanisms are still debated 2 , 3 . The composition of the lunar highland crust is therefore important for understanding the formation of such a magma ocean and the subsequent evolution of the Moon. The Multiband Imager 4 on the Selenological and Engineering Explorer (SELENE) 5 has a high spatial resolution of optimized spectral coverage, which should allow a clear view of the composition of the lunar crust. Here we report the global distribution of rocks of high plagioclase abundance (approaching 100 vol.%), using an unambiguous plagioclase absorption band recorded by the SELENE Multiband Imager. If the upper crust indeed consists of nearly 100 vol.% plagioclase, this is significantly higher than previous estimates of 82–92 vol.% (refs 2 , 6 , 7 ), providing a valuable constraint on models of lunar magma ocean evolution.
Massive layer of pure anorthosite on the Moon
We present a new global survey of the purest anorthosite (PAN) rock using the Spectral Profiler onboard Kaguya. We found that PAN rocks are widely distributed over the Moon, including the Feldspathic Highland Terrain and the south and north polar regions. All PAN sites are associated with huge impact structures with diameters larger than 100 km. Based on the global distributions of PAN and olivine‐rich sites, we propose the existence of a massive PAN layer with a thickness of ∼50 km below an uppermost mafic‐rich mixed layer with a thickness of ∼10 km. Below the PAN layer, a lower crustal layer with olivine‐rich materials may be present on the nearside, but not on the far side of the Moon. The existence of a PAN layer with a thickness of ∼50 km suggests an Al2O3 abundance of 33 to 34 wt.% in the lunar crust, which is higher than previous estimates of <32 wt.%. Our data indicate the massive production event of PAN during the early stage of the formation of the Moon, supporting the lunar magma ocean scenario. Key Points The existence of a massive layer of pure anorthosite on the Moon Massive production of pure anorthosite produced during the lunar magma ocean Dichotomy of lunar lower crust
Asymmetric crustal growth on the Moon indicated by primitive farside highland materials
The origin of the dichotomy between the lunar nearside and farside is unclear. Analysis of spectral reflectance data from the Kaguya lunar orbiter indicates a systematic difference in the degree of differentiation in the oldest lunar crustal terrains, linking the lunar dichotomy to crystallization of the magma ocean. The Moon’s nearside and farside differ in topography 1 , crustal thickness 2 , mare volcanic activity 3 and elemental concentrations 4 . The origin of this dichotomy is still unclear 5 , 6 , 7 . It is also unknown whether the characteristics of the oldest crust, the anorthositic lunar highlands, reflect a different magmatic evolution of nearside and farside crust. Based on analyses of nearside highland rocks 8 , 9 , it has been suggested that nearside crustal growth occurred from an evolved, iron-rich magma ocean 10 , but information from the farside highlands is lacking. Here we apply an empirical algorithm to lunar reflectance spectra 11 from the Kaguya Spectral Profiler and report that magnesium contents relative to iron of primitive crustal highland rocks on the farside are higher than on the nearside. Our findings indicate that the farside crust consists of rocks that crystallized from less-evolved magma than the nearside crust. We conclude that the lunar dichotomy is directly linked to crystallization of the magma ocean and suggest that the composition of the magma ocean was more primitive at the time of crustal growth than previously estimated.
ZDHHC8 knockdown enhances radiosensitivity and suppresses tumor growth in a mesothelioma mouse model
Mesothelioma is an aggressive tumor caused by asbestos exposure, the incidence of which is predicted to increase globally. The prognosis of patients with mesothelioma undergoing conventional therapy is poor. Radiation therapy for mesothelioma is of limited use because of the intrinsic radioresistance of tumor cells compared with surrounding normal tissue. Thus, a novel molecular‐targeted radiosensitizing agent that enhances the radiosensitivity of mesothelioma cells is required to improve the therapeutic efficacy of radiation therapy. ZDHHC8 knockdown reduces cell survival and induces an impaired G2/M checkpoint after X‐irradiation in HEK293 cells. In the present study, we further analyzed the effect of the combination of ZDHHC8 knockdown and X‐irradiation and assessed its therapeutic efficacy in mesothelioma models. SiRNA‐induced ZDHHC8 knockdown in 211H and H2052 mesothelioma cells significantly reduced cell survival after X‐irradiation. In 211H cells treated with ZDHHC8 siRNA and X‐irradiation, the G2/M checkpoint was impaired and there was an increase in the number of cells with micronuclei, as well as apoptotic cells, in vitro. In 211H tumor‐bearing mice, ZDHHC8 siRNA and X‐irradiation significantly suppressed tumor growth, whereas ZDHHC8 siRNA alone did not. Immunohistochemical analysis showed decreased cell proliferation and induction of apoptosis in tumors treated with ZDHHC8 siRNA and X‐irradiation, but not with ZDHHC8 siRNA alone. These results suggest that ZDHHC8 knockdown with X‐irradiation induces chromosomal instability and apoptosis through the impaired G2/M checkpoint. In conclusion, the combination of ZDHHC8 siRNA and X‐irradiation has the potential to improve the therapeutic efficacy of radiation therapy for malignant mesothelioma. (Cancer Sci 2012; 103: 203–209)