Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Ogoti, Yamini"
Sort by:
Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy
by
Lockyer, Pamela
,
Class, Caleb
,
Marchesini, Matteo
in
631/532
,
631/67/71
,
Acute myeloid leukemia
2022
Myelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited. Through integrative molecular profiling of HSCs and progenitor cells in large patient cohorts, we found that MDS HSCs in two distinct differentiation states are maintained throughout the clinical course of the disease, and expand at progression, depending on recurrent activation of the anti-apoptotic regulator BCL-2 or nuclear factor-kappa B-mediated survival pathways. Pharmacologically inhibiting these pathways depleted MDS HSCs and reduced tumor burden in experimental systems. Further, patients with MDS who progressed after failure to frontline HMA therapy and whose HSCs upregulated BCL-2 achieved improved clinical responses to venetoclax-based therapy in the clinical setting. Overall, our study uncovers that HSC architectures in MDS are potential predictive biomarkers to guide second-line treatments after HMA failure. These findings warrant further investigation of HSC-specific survival pathways to identify new therapeutic targets of clinical potential in MDS.
Extensive characterization of the stem and progenitor cell hierarchies of myelodysplastic syndromes reveals compensatory survival mechanisms underpinning the failure of hypomethylating agents, and uncovers biomarkers that predict second-line clinical response to venetoclax-based therapy.
Journal Article
Pancreatic cancer cachexia is mediated by PTHrP-driven disruption of adipose de novo lipogenesis
2025
Pancreatic cancer patients have the highest rates and most severe forms of cancer cachexia, yet cachexia etiologies remain largely elusive, leading to a lack of effective intervening therapies. Parathyroid hormone-related protein (PTHrP) has been clinically implicated as a putative regulator of cachexia, with serum PTHrP levels correlating with increased weight loss in PDAC patients. Here we show that cachectic PDAC patients have high expression of tumor PTHrP and use a genetically engineered mouse model to functionally demonstrate that loss of PTHrP blocks cachectic wasting, dramatically extending overall survival. The re-expression of PTHrP in lowly cachectic models is sufficient to induce wasting and reduce survival in mice, which is reversed by the conditional deletion of the PTHrP receptor,
, in adipocytes. Mechanistically, tumor-derived PTHrP suppresses
lipogenesis in adipocytes, leading to a molecular rewiring of adipose depots to promote wasting in the cachectic state. Finally, the pharmacological disruption of the PTHrP-PTH1R signaling axis abrogates wasting, highlighting that a targeted disruption of tumor-adipose crosstalk is an effective means to limit cachexia.
Journal Article