Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
61 result(s) for "Ojaveer, Henn"
Sort by:
A Census of Marine Biodiversity Knowledge, Resources, and Future Challenges
Because every NRIC was not able to provide all the categories of data analysed here, not every region is represented in every table and graph. Other aspects of biodiversity, such as within-species and ecosystem levels of diversity, build on such species knowledge. Because a different metric of prokaryote diversity is required than the species concepts as applied to eukaryotes, we did not quantify prokaryote diversity, although some regional syntheses provided estimates and comments on the state of knowledge about prokaryote diversity (e.g. [8], [10], [11]). [...]the high proportion of Angiospermae in western Canada may reflect inclusion of salt-marsh plants excluded from other inventories. [...]species-level inventories compiled using a standardised classification at species level are compared, it will not be possible to conclude whether these higher taxa have the same proportions across the world's oceans. Knowledge and resources We suggest that the significant correlations between the number of species identification guides and species known to occur within regions indicate that it is easier to discover species when good identification guides are available. [...]the production of regularly updated and comprehensive guides to all species in regions should be a priority for both research and environmental management (e.g., detection of invasive species, rare species, and pests).
The enlargement of the Suez Canal—Erythraean introductions and management challenges
The Suez Canal is the main pathway of introduction of non-indigenous species into the Mediterranean Sea. The successive enlargements of the Suez Canal have raised concern over increasing propagule pressure resulting in continuous introductions of new non-indigenous species and associated degradation and loss of native populations, habitats and ecosystem services. The United Nations Environment Programme (UNEP) through its Barcelona Convention has pledged to protect the biological resources, habitats and ecosystem services of the Mediterranean Sea, and have committed to spatial protection measures. Yet, UNEP shied away from discussing, let alone managing, the influx of tropical non-indigenous biota introduced through the Suez Canal. Surveys, funded by the Regional Activity Centre for Specially Protected Areas (UNEP RAC/SPA), established by the Contracting Parties to the Barcelona Convention, revealed that marine protected areas in the eastern Mediterranean have been inundated by these non-indigenous species, and may in fact function as hubs for their secondary dispersal. We call attention to the failure of an environmental policy that left the entire Mediterranean Sea prone to colonization by highly impacting non-indigenous species, including poisonous and venomous ones. Scientific research has been documenting this bioinvasion for over a century, yet beyond the ambit of marine scientists there is a lack of awareness of the scale of Mediterranean-wide consequences and scant appetite to enact the necessary environmental policies.
Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems
Aim The introduction of aquatic non‐indigenous species (ANS) has become a major driver for global changes in species biogeography. We examined spatial patterns and temporal trends of ANS detections since 1965 to inform conservation policy and management. Location Global. Methods We assembled an extensive dataset of first records of detection of ANS (1965–2015) across 49 aquatic ecosystems, including the (a) year of first collection, (b) population status and (c) potential pathway(s) of introduction. Data were analysed at global and regional levels to assess patterns of detection rate, richness and transport pathways. Results An annual mean of 43 (±16 SD) primary detections of ANS occurred—one new detection every 8.4 days for 50 years. The global rate of detections was relatively stable during 1965–1995, but increased rapidly after this time, peaking at roughly 66 primary detections per year during 2005–2010 and then declining marginally. Detection rates were variable within and across regions through time. Arthropods, molluscs and fishes were the most frequently reported ANS. Most ANS were likely introduced as stowaways in ships’ ballast water or biofouling, although direct evidence is typically absent. Main conclusions This synthesis highlights the magnitude of recent ANS detections, yet almost certainly represents an underestimate as many ANS go unreported due to limited search effort and diminishing taxonomic expertise. Temporal rates of detection are also confounded by reporting lags, likely contributing to the lower detection rate observed in recent years. There is a critical need to implement standardized, repeated methods across regions and taxa to improve the quality of global‐scale comparisons and sustain core measures over longer time‐scales. It will be fundamental to fill in knowledge gaps given that invasion data representing broad regions of the world's oceans are not yet readily available and to maintain knowledge pipelines for adaptive management.
Historical baselines in marine bioinvasions: Implications for policy and management
The human-mediated introduction of marine non-indigenous species is a centuries- if not millennia-old phenomenon, but was only recently acknowledged as a potent driver of change in the sea. We provide a synopsis of key historical milestones for marine bioinvasions, including timelines of (a) discovery and understanding of the invasion process, focusing on transfer mechanisms and outcomes, (b) methodologies used for detection and monitoring, (c) approaches to ecological impacts research, and (d) management and policy responses. Early (until the mid-1900s) marine bioinvasions were given little attention, and in a number of cases actively and routinely facilitated. Beginning in the second half of the 20th century, several conspicuous non-indigenous species outbreaks with strong environmental, economic, and public health impacts raised widespread concerns and initiated shifts in public and scientific perceptions. These high-profile invasions led to policy documents and strategies to reduce the introduction and spread of non-indigenous species, although with significant time lags and limited success and focused on only a subset of transfer mechanisms. Integrated, multi-vector management within an ecosystem-based marine management context is urgently needed to address the complex interactions of natural and human pressures that drive invasions in marine ecosystems.
successful non-native predator, round goby, in the Baltic Sea: generalist feeding strategy, diverse diet and high prey consumption
The round goby Neogobius melanostomus has successfully invaded much of the Baltic Sea. However, very little is known about the feeding habits of the species in this newly invaded environment. Our laboratory experiment showed that the round goby is able to effectively consume a diverse variety of prey when given the choice between dominant benthic invertebrates: bivalves (Macoma balthica, Mytilus trossulus, Cerastoderma glaucum) and amphipods (Gammarus spp.). In contrast consumption of the gastropod (Theodoxus fluviatilis) was very low in all provided combinations. Nevertheless, the round goby had no statistically significant preference towards any of the prey taxa. The round goby exhibited size-specific consumption of M. trossulus, with smaller individuals being consumed at least 25% more than larger size classes. In addition elevated prey density resulted in higher consumption of prey by the fish. The broad diet suggests that shifting densities of benthic invertebrate prey has little influence on the further dispersal of the round goby in the Baltic Sea as the species is potentially able to switch between several native invertebrate taxa. This opportunistic feeding behaviour has likely favoured this invasion and ensured success of the species in the invaded ecosystem.
Classification of Non-Indigenous Species Based on Their Impacts: Considerations for Application in Marine Management
Assessment of the ecological and economic/societal impacts of the introduction of non-indigenous species (NIS) is one of the primary focus areas of bioinvasion science in terrestrial and aquatic environments, and is considered essential to management. A classification system of NIS, based on the magnitude of their environmental impacts, was recently proposed to assist management. Here, we consider the potential application of this classification scheme to the marine environment, and offer a complementary framework focussing on value sets in order to explicitly address marine management concerns. Since existing data on marine NIS impacts are scarce and successful marine removals are rare, we propose that management of marine NIS adopt a precautionary approach, which not only would emphasise preventing new incursions through pre-border and at-border controls but also should influence the categorisation of impacts. The study of marine invasion impacts requires urgent attention and significant investment, since we lack the luxury of waiting for the knowledge base to be acquired before the window of opportunity closes for feasible management.
Status of Biodiversity in the Baltic Sea
The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity.
The Future of the Oceans Past: Towards a Global Marine Historical Research Initiative
Historical research is playing an increasingly important role in marine sciences. Historical data are also used in policy making and marine resource management, and have helped to address the issue of shifting baselines for numerous species and ecosystems. Although many important research questions still remain unanswered, tremendous developments in conceptual and methodological approaches are expected to contribute to a comprehensive understanding of the global history of human interactions with life in the seas. Based on our experiences and knowledge from the \"History of Marine Animal Populations\" project, this paper identifies the emerging research topics for future historical marine research. It elaborates on concepts and tools which are expected to play a major role in answering these questions, and identifies geographical regions which deserve future attention from marine environmental historians and historical ecologists.
Methodological Challenges in Assessing the Environmental Status of a Marine Ecosystem: Case Study of the Baltic Sea
Assessments of the environmental status of marine ecosystems are increasingly needed to inform management decisions and regulate human pressures to meet the objectives of environmental policies. This paper addresses some generic methodological challenges and related uncertainties involved in marine ecosystem assessment, using the central Baltic Sea as a case study. The objectives of good environmental status of the Baltic Sea are largely focusing on biodiversity, eutrophication and hazardous substances. In this paper, we conduct comparative evaluations of the status of these three segments, by applying different methodological approaches. Our analyses indicate that the assessment results are sensitive to a selection of indicators for ecological quality objectives that are affected by a broad spectrum of human activities and natural processes (biodiversity), less so for objectives that are influenced by a relatively narrow array of drivers (eutrophications, hazardous substances). The choice of indicator aggregation rule appeared to be of essential importance for assessment results for all three segments, whereas the hierarchical structure of indicators had only a minor influence. Trend-based assessment was shown to be a useful supplement to reference-based evaluation, being independent of the problems related to defining reference values and indicator aggregation methodologies. Results of this study will help in setting priorities for future efforts to improve environmental assessments in the Baltic Sea and elsewhere, and to ensure the transparency of the assessment procedure.
Seasonal depth distribution and thermal experience of the non-indigenous round goby Neogobius melanostomus in the Baltic Sea: implications to key trophic relations
Native to the Ponto-Caspian region, the benthic round goby (Neogobius melanostomus) has invaded several European inland waterbodies as well as the North American Great Lakes and the Baltic Sea. The species is capable of reaching very high densities in the invaded ecosystems, with not only evidence for significant food-web effects on the native biota and habitats, but also negative implications to coastal fishers. Although generally considered a coastal species, it has been shown that round goby migrate to deeper areas of the Great Lakes and other inland lakes during the cold season. Such seasonal movements may create new spatio-temporal ecosystem consequences in invaded systems. To seek evidence for seasonal depth distribution in coastal marine habitats, we compiled all available catch data for round goby in the Baltic Sea since its invasion and until 2017. We furthermore related the depths at capture for each season with the ambient thermal environment. The round goby spend autumn and winter at significantly deeper and offshore areas compared to spring and summer months; few fish were captured at depths < 25 m in these colder months. Similarly, in spring and summer, round goby were not captured at depths > 25 m. The thermal conditions at which round goby were caught varied significantly between seasons, being on average 18.3 °C during summer, and dropping to a low 3.8 °C during winter months. Overall, the fish sought the depths within each season with the highest possible temperatures. The spatial distribution of the round goby substantially overlaps with that of its main and preferred prey (mussels) and with that of its competitor for food (flatfish), but only moderately with the coastal predatory fish (perch), indicating thereby very complex trophic interactions associated with this invasion. Further investigations should aim at quantifying the food web consequences and coupling effects between different habitats related to seasonal migrations of the round goby, both in terms of the species as a competitor, predator and prey.