Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Okada, Morihiro"
Sort by:
Erebosis, a new cell death mechanism during homeostatic turnover of gut enterocytes
Many adult tissues are composed of differentiated cells and stem cells, each working in a coordinated manner to maintain tissue homeostasis during physiological cell turnover. Old differentiated cells are believed to typically die by apoptosis. Here, we discovered a previously uncharacterized, new phenomenon, which we name erebosis based on the ancient Greek word erebos (“complete darkness”), in the gut enterocytes of adult Drosophila . Cells that undergo erebosis lose cytoskeleton, cell adhesion, organelles and fluorescent proteins, but accumulate Angiotensin-converting enzyme (Ance). Their nuclei become flat and occasionally difficult to detect. Erebotic cells do not have characteristic features of apoptosis, necrosis, or autophagic cell death. Inhibition of apoptosis prevents neither the gut cell turnover nor erebosis. We hypothesize that erebosis is a cell death mechanism for the enterocyte flux to mediate tissue homeostasis in the gut.
Methionine restriction breaks obligatory coupling of cell proliferation and death by an oncogene Src in Drosophila
Oncogenes often promote cell death as well as proliferation. How oncogenes drive these diametrically opposed phenomena remains to be solved. A key question is whether cell death occurs as a response to aberrant proliferation signals or through a proliferation-independent mechanism. Here, we reveal that Src, the first identified oncogene, simultaneously drives cell proliferation and death in an obligatorily coupled manner through parallel MAPK pathways. The two MAPK pathways diverge from a lynchpin protein Slpr. A MAPK p38 drives proliferation whereas another MAPK JNK drives apoptosis independently of proliferation signals. Src-p38-induced proliferation is regulated by methionine-mediated Tor signaling. Reduction of dietary methionine uncouples the obligatory coupling of cell proliferation and death, suppressing tumorigenesis and tumor-induced lethality. Our findings provide an insight into how cells evolved to have a fail-safe mechanism that thwarts tumorigenesis by the oncogene Src. We also exemplify a diet-based approach to circumvent oncogenesis by exploiting the fail-safe mechanism.
Competitive PCR with dual fluorescent primers enhances the specificity and reproducibility of genotyping animals generated from genome editing
Targeted genome editing is a powerful tool for studying gene function in almost every aspect of biological and pathological processes. The most widely used genome editing approach is to introduce engineered endonucleases or CRISPR/Cas system into cells or fertilized eggs to generate double-strand DNA breaks within the targeted region, leading to DNA repair through homologous recombination or non-homologous end joining (NHEJ). DNA repair through NHEJ mechanism is an error-prone process that often results in point mutations or stretches of indels (insertions and deletions) within the targeted region. Such mutations in embryos are germline transmissible, thus providing an easy means to generate organisms with gene mutations. However, point mutations and short indels present difficulty for genotyping, often requiring labor intensive sequencing to obtain reliable results. Here, we developed a single-tube competitive PCR assay with dual fluorescent primers that allowed simple and reliable genotyping. While we used Xenopus tropicalis as a model organism, the approach should be applicable to genotyping of any organisms.
A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.
The balance of two opposing factors Mad and Myc regulates cell fate during tissue remodeling
Cell proliferation and differentiation are two distinct yet coupled processes in development in diverse organisms. Understanding the molecular mechanisms that regulate this process is a central theme in developmental biology. The intestinal epithelium is a highly complex tissue that relies on the coordination of cell proliferation within the crypts and apoptosis mainly at the tip of the villi, preservation of epithelial function through differentiation, and homeostatic cell migration along the crypt-villus axis. Small populations of adult stem cells are responsible for the self-renewal of the epithelium throughout life. Surprisingly, much less is known about the mechanisms governing the remodeling of the intestine from the embryonic to adult form. Furthermore, it remains unknown how thyroid hormone (T3) affects stem cell development during this postembryonic process, which is around birth in mammals when T3 level increase rapidly in the plasma. Tissue remodeling during amphibian metamorphosis is very similar to the maturation of the mammalian organs around birth in mammals and is regulated by T3. In particular, many unique features of Xenopus intestinal remodeling during metamorphosis has enabled us and others to elucidate how adult stem cells are formed during postembryonic development in vertebrates. In this review, we will focus on recent findings on the role of Mad1/c-Myc in cell death and proliferation during intestinal metamorphosis and discuss how a Mad1–c-Myc balance controls intestinal epithelial cell fate during this T3-dependent process.
Simplifying Genotyping of Mutants from Genome Editing with a Parallel qPCR-Based iGenotype Index
Targeted genome editing is a powerful tool in reverse genetic studies of gene function in many aspects of biological and pathological processes. The CRISPR/Cas system or engineered endonucleases such as ZFNs and TALENs are the most widely used genome editing tools that are introduced into cells or fertilized eggs to generate double-strand DNA breaks within the targeted region, triggering cellular DNA repair through either homologous recombination or non-homologous end joining (NHEJ). DNA repair through the NHEJ mechanism is usually error-prone, leading to point mutations or indels (insertions and deletions) within the targeted region. Some of the mutations in embryos are germline transmissible, thus providing an effective way to generate model organisms with targeted gene mutations. However, point mutations and short indels are difficult to be effectively genotyped, often requiring time-consuming and costly DNA sequencing to obtain reliable results. Here, we developed a parallel qPCR assay in combination with an iGenotype index to allow simple and reliable genotyping. The genotype-associated iGenotype indexes converged to three simple genotype-specific constant values (1, 0, −1) regardless of allele-specific primers used in the parallel qPCR assays or gene mutations at wide ranges of PCR template concentrations, thus resulting in clear genotype-specific cutoffs, established through statistical analysis, for genotype identification. While we established such a genotyping assay in the Xenopus tropicalis model, the approach should be applicable to genotyping of any organism or cells and can be potentially used for large-scale, automated genotyping.
Risk factors for oxaliplatin-induced vascular pain in patients with colorectal cancer and comparison of the efficacy of preventive methods
Background Vascular pain is a common adverse drug reaction in colorectal cancer patients receiving peripheral venous administration of oxaliplatin. The aim of this work was to identify risk factors for vascular pain, and to examine whether currently used treatments reduce its incidence. Methods We conducted a multicenter retrospective study in Japanese colorectal cancer patients receiving peripheral venous administration of oxaliplatin. The effects of various treatments (administration of analgesics, addition of dexamethasone to the infusion solution for pH adjustment, dilution of the infusion solution, or use of hot gel for warming the injection site) on the incidence of vascular pain were assessed. Risk factors for vascular pain were identified by multiple logistic regression analysis. Results One hundred and ninety patients who had received an oxaliplatin-containing regimen via a peripheral venous route were analyzed. None of the preventive methods examined significantly reduced the incidence of vascular pain. BMI (BMI < 22), clinical stage (I-III) and oxaliplatin dosage (130 mg/m 2 versus dose reduction) were identified as independent risk factors for development of vascular pain. The incidence of oxaliplatin-induced vascular pain was significantly higher in patients who had two or more risk factors. Conclusions BMI, clinical stage and oxaliplatin dosage were identified as independent predictive markers for oxaliplatin-induced vascular pain. Existing treatments for vascular pain are not effective in reducing its incidence.
Erebosis, a new cell death mechanism during homeostatic turnover of gut enterocytes
Many adult tissues are composed of differentiated cells and stem cells, each working in a coordinated manner to maintain tissue homeostasis during physiological cell turnover. Old differentiated cells are believed to typically die by apoptosis. Here, we discovered a previously uncharacterized, new phenomenon, which we name erebosis based on the ancient Greek word erebos (\"complete darkness\"), in the gut enterocytes of adult Drosophila. Cells that undergo erebosis lose cytoskeleton, cell adhesion, organelles and fluorescent proteins, but accumulate Angiotensin-converting enzyme (Ance). Their nuclei become flat and occasionally difficult to detect. Erebotic cells do not have characteristic features of apoptosis, necrosis, or autophagic cell death. Inhibition of apoptosis prevents neither the gut cell turnover nor erebosis. We hypothesize that erebosis is a cell death mechanism for the enterocyte flux to mediate tissue homeostasis in the gut.
Adenoviral E1A Suppresses Secretory Leukoprotease Inhibitor and Elafin Secretion in Human Alveolar Epithelial Cells and Bronchial Epithelial Cells
Background: An imbalance between neutrophil protease and surrounding antiprotease levels has been shown to be important in the pathogenesis of chronic obstructive pulmonary disease (COPD). Adenoviral E1A DNA and protein are frequently detected in the lungs of COPD patients. As secretory leukoprotease inhibitor (SLPI) and elafin/skin-derived antileukoproteinase (SKALP) are locally produced in the lung and inhibit neutrophil elastase activity, we hypothesized that adenoviral E1A might affect the production of these antiproteases. Objectives: To examine the effect of E1A on SLPI and elafin/SKALP secretion in A549 (alveolar epithelial) cells and primary human bronchial epithelial (HBE) cells. Methods: SLPI and elafin/SKALP were quantitated from cell culture supernatants using an ELISA. SLPI mRNA expression was examined by Northern blotting, and SLPI promoter activity was measured using a reporter gene assay. Results: E1A significantly suppressed SLPI and elafin/SKALP secretion by A549 cells upon interleukin (IL)-1β stimulation. E1A also suppressed SLPI and elafin/SKALP secretion by HBE cells. SLPI mRNA expression in A549 cells was suppressed by E1A regardless of IL-1β stimulation. IL-1β-induced SLPI promoter activity was suppressed by E1A gene transfection into A549 cells. Conclusions: Our findings of adenoviral E1A-mediated suppression of SLPI and elafin/SKALP secretion suggest that E1A may be involved in the enhancement of alveolar damage and play a role in the COPD process.
Molecular and cytological analyses reveal distinct transformations of intestinal epithelial cells during Xenopus metamorphosis
Background The thyroid hormone (T3)-induced formation of adult intestine during amphibian metamorphosis resembles the maturation of the mammalian intestine during postembryonic development, the period around birth when plasma T3 level peaks. This process involves de novo formation of adult intestinal stem cells as well as the removal of the larval epithelial cells through apoptosis. Earlier studies have revealed a number of cytological and molecular markers for the epithelial cells undergoing different changes during metamorphosis. However, the lack of established double labeling has made it difficult to ascertain the identities of the metamorphosing epithelial cells. Results Here, we carried out different double-staining with a number of cytological and molecular markers during T3-induced and natural metamorphosis in Xenopus laevis. Our studies demonstrated conclusively that the clusters of proliferating cells in the epithelium at the climax of metamorphosis are undifferentiated epithelial cells and express the well-known adult intestinal stem cell marker gene Lgr5. We further show that the adult stem cells and apoptotic larval epithelial cells are distinct epithelial cells during metamorphosis. Conclusions Our findings suggest that morphologically identical larval epithelial cells choose two alternative paths: programmed cell death or dedifferentiation to form adult stem cells, in response to T3 during metamorphosis with apoptosis occurring prior to the formation of the proliferating adult stem cell clusters (islets).