Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
13
result(s) for
"Okdah, Liliane"
Sort by:
Dissemination of the mcr-1 colistin resistance gene
by
Chabou, Selma
,
Okdah, Liliane
,
Morand, Serge
in
Animals
,
Bacteriology
,
Colistin - therapeutic use
2016
In their Comment on the Article by Yi-Yun Liu and colleagues about the emergence of plasmid-mediated colistin resistance involving the mcr-1 gene from bacteria isolated in China,1 David Paterson and Patrick Harris2 referred to our finding of colistin resistance in two Escherichia coli isolates from a pig and a human being in Laos that were indistinguishable by pulsed-field gel electrophoresis.3 Our results, suggested animal to human transmission for which no known chromosomally encoded colistin resistance mechanisms were identified, raising the question of a similar mechanism of colistin resistance to that identified by Liu and colleagues.
Journal Article
Successful treatment of infective endocarditis due to pandrug-resistant Klebsiella pneumoniae with ceftazidime-avibactam and aztreonam
2021
Pandrug-resistant (PDR)
K. pneumoniae
refractory to conventional treatment has been reported worldwide, causing a huge burden on the healthcare system, patient safety and the economy.
K. pneumoniae
is a prominent opportunistic pathogen causing hospital-acquired and community-acquired infections, but is rarely associated with infective endocarditis. Currently, there are sparse data guiding the optimal regimen when commonly used antibiotics fail, notably for the treatment of endocarditis infections. Here we report our experience in treating a 40-year-old female with PDR
K. pneumoniae
infection of cardiovascular implantable electronic device (CIED) and right-sided infective endocarditis. Initial susceptibility testing of the incriminated pathogen showed an apparent susceptibility to colistin but the prolonged course of colistin, gentamicin and meropenem did not resolve the infection. However, the synergistic combinations of aztreonam with ceftazidime-avibactam was able to overcome resistance and clear the infection rapidly. Genome sequencing showed that the PDR
K. pneumoniae
isolate belongs to the international high-risk clone ST14. The isolate harbored genes encoding NDM-1, OXA-48, CTX-M-14b, SHV-28 and OXA-1, explaining resistance to all β-lactams, including carbapenems. It carried the
armA
gene conferring resistance to all clinically important aminoglycosides and had alterations in GyrA, ParC and MgrB, explaining resistance to ciprofloxacin and colistin.
Journal Article
Genomic Characterization and Resistance Mechanisms of Carbapenem-Resistant Klebsiella pneumoniae ST101 Isolates from Saudi Arabia
by
Alkhulaifi, Manal M
,
Alswaji, Abdulrahman A
,
Al Johani, Sameera M
in
Anti-Bacterial Agents - pharmacology
,
Antibiotics
,
Antimicrobial agents
2025
Carbapenem-resistant
(CRKP) represents a critical global health threat, with ST101 identified as a major circulating clone in Saudi Arabia. We used whole genome sequencing and plasmid reconstruction to investigate the molecular characteristics of CRKP ST101 isolates from Saudi Arabia (2018-2021), analyzing antimicrobial resistance genes (ARGs), virulence factors, and plasmid structure and replicon types. Clinical isolates were obtained from the Ministry of National Guard Health Affairs (MNGHA) hospitals in Saudi Arabia between 2018 and 2021. Whole-genome sequencing was performed using the Illumina MiSeq
platform, followed by comprehensive bioinformatic analysis of ARGs, virulence factors, and plasmid content. All ten isolates belonged to ST101 and harbored extensive antimicrobial resistance (AMR) and virulence determinants. Nine isolates (90%) carried
, with three co-harboring
, representing dual-carbapenemase producers. These carbapenemase genes were located on plasmids with distinct replicon types, including IncL/M, IncHI1B/IncFIB, and IncFIA/IncR. All isolates were multidrug-resistant (MDR), with half classified as extensively drug-resistant (XDR). Four isolates exhibited hypervirulent profiles, harboring aerobactin and yersiniabactin siderophores. This study provides comprehensive genomic characterization of CRKP ST101 in Saudi Arabia, revealing complex resistance mechanisms mediated by diverse plasmid types. The findings highlight the importance of genomic surveillance to track the evolution and dissemination of high-risk MDR and XDR lineages and inform targeted infection control strategies.
Journal Article
Comparative evaluation of the UMIC Colistine kit to assess MIC of colistin of gram-negative rods
by
Le Page, Stéphanie
,
Bardet, Lucie
,
Okdah, Liliane
in
Animals
,
Anti-Bacterial Agents - pharmacology
,
Antibacterial agents
2019
Background
The recent description of the first plasmid-mediated colistin-resistant gene
mcr-1
, conferring transferable and low-level resistance to colistin, raised concern about the need to implement a rapid and reliable screening method to detect colistin-resistant clinical isolates. The only valid method to assess the MIC of colistin is the broth microdilution according to the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. UMIC Colistine is a ready-to-use broth microdilution kit developed to easily assess colistin MIC by proposing unitary polystyrene strips containing 11 concentrations of dehydrated colistin. Here, we evaluated the UMIC Colistine kit on 235 Gram-negative rods (176
Enterobacterales
, including 70 harboring a
mcr
gene, and 59 non-fermentative), through comparison to the reference broth microdilution method prepared in accordance with EN ISO 20776-1:2006 standard. Reproducibility of the UMIC Colistine was assayed with the three recommended quality control strains
E. coli
ATCC 25922,
E. coli
NCTC 13846 (
mcr-1
positive), and
P. aeruginosa
ATCC 27853, as for stability testing.
Results
Categorical agreement was 100% with 63.4% (
n
= 149) of colistin-resistant strains, and 36.6% (
n
= 86) of colistin-susceptible strains with both methods (S ≤ 2 μg/mL and R > 2 μg/mL). No major error or very major error was reported. Essential agreement was 94.0% (
n
= 221), and 100% for detection of colistin-resistant strains as compared to the reference method. Pearson’s correlation between UMIC Colistine and the reference method was 0.98. Reproducibility of the UMIC Colistine system was 97.8% with MICs of the quality control strains within the target ranges. However, some isolates had lower MIC with UMIC Colistine, but that did not change their categorization as colistin-susceptible, and this phenomenon should be further explored.
Conclusions
The UMIC Colistine kit is an easy to perform unitary device that showed excellent results when compared to the reference method. The UMIC Colistine system is a rapid and reliable broth microdilution method that is suitable to assess the colistin MIC of clinical isolates in clinical microbiology laboratories.
Journal Article
Genomic Characterization of Colistin-Resistant Isolates from the King Fahad Medical City, Kingdom of Saudi Arabia
by
Okdah, Liliane
,
AlDosary, Mohammed Saeed
,
Abdelrahman, Tamir
in
Acinetobacter baumannii
,
Amino acids
,
Aminoglycosides
2022
Background: Whole-genome sequencing is one of the best ways to investigate resistance mechanisms of clinical isolates as well as to detect and identify circulating multi-drug-resistant (MDR) clones or sub-clones in a given hospital setting. Methods: Here, we sequenced 37 isolates of Acinetobacter baumannii, 10 Klebsiella pneumoniae, and 5 Pseudomonas aeruginosa collected from the biobank of the hospital setting of the King Fahad Medical City. Complete phenotypic analyses were performed, including MALDI-TOF identification and antibiotic susceptibility testing. After the genome assembly of raw data, exhaustive genomic analysis was conducted including full resistome determination, genomic SNP (gSNP) analysis, and comparative genomics. Results: Almost all isolates were highly resistant to all tested antibiotics, including carbapenems and colistin. Resistome analysis revealed many antibiotic resistance genes, including those with resistance to β-lactams, aminoglycosides, macrolides, tetracyclines, sulfamids, quinolones, and phenicols. In A. baumannii isolates, the endemic carbapenemase blaOXA-23 gene was detected in 36 of the 37 isolates. Non-synonymous mutations in pmrB were detected in almost all of the isolates and likely mediated colistin resistance. Interestingly, while classical analyses, such as MLST, revealed the predominance of an ST2 clone in A. baumannii isolates, the genomic analysis revealed the presence of five circulating sub-clones and identified several isolate transmissions between patients. In the 10 K. pneumoniae isolates, several resistance genes were identified, and the observed carbapenem resistance was likely mediated by overexpression of the detected extended-spectrum-β-lactamase (ESBL) genes associated with low membrane permeability as few carbapenemase genes were detected with just blaOXA-48 in three isolates. Colistin resistance was mediated either by non-synonymous mutations in the MgrB regulator, PmrA, PmrB, and PhoQ proteins or the presence of the MCR-1 protein. Here, gSNP analysis also revealed the existence of bacterial clones and cases of isolate transmissions between patients. The five analyzed P. aeruginosa isolates were highly resistant to all tested antibiotics, including carbapenems mediated by loss or truncated OprD porin, and colistin resistance was associated with mutations in the genes encoding the PmrA, PmrB, or PhoQ proteins. Conclusion: We demonstrate here the usefulness of whole-genome sequencing to exhaustively investigate the dissemination of MDR isolates at the sub-clone level. Thus, we suggest implementing such an approach to monitor the emergence and spread of new clones or sub-clones, which classical molecular analyses cannot detect. Moreover, we recommend increasing the surveillance of the endemic and problematic colistin resistance mcr-1 gene to avoid extensive dissemination.
Journal Article
Epididymo-Orchitis Caused by POM-1 Metallo-β-Lactamase-Producing Pseudomonas otitidis in an Immunocompetent Patient: Case Report and Molecular Characterization
by
Okdah, Liliane
,
Alghoribi, Majed
,
Alsaedy, Abdulrahman
in
Abscesses
,
Antibiotics
,
Case Report
2022
Pseudomonas otitidis is a rare and unique species among the Pseudomonas genus that has not been previously reported as a cause of male genitourinary tract infection. In this report, we describe a case of a 20-year-old immunocompetent male who presented with recurrent epididymo-orchitis, which was initially misidentified as Vibrio vulnificus and treated successfully. The causative agent could not be identified appropriately using the available routine methods, but a final identification was established using 16S rRNA targeted sequencing followed by whole-genome sequencing.
Journal Article
An Efficient One-Pot Catalyzed Synthesis of 2,4-Disubstituted 5-Nitroimidazoles Displaying Antiparasitic and Antibacterial Activities
by
Kabri, Youssef
,
Okdah, Liliane
,
Spitz, Cédric
in
5-nitroimidazole
,
Acids
,
Anti-Bacterial Agents - chemical synthesis
2017
A one-pot regioselective bis-Suzuki-Miyaura or Suzuki-Miyaura/Sonogashira reaction on 2,4-dibromo-1-methyl-5-nitro-1H-imidazole under microwave heating was developed. This method is applicable to a wide range of (hetero)arylboronic acids and terminal alkynes. Additionally, this approach provides a simple and efficient way to synthesize 2,4-disubstituted 5-nitroimidazole derivatives with antibacterial and antiparasitic properties.
Journal Article
Genomic Characterization of Uropathogenic IEscherichia coli/I Isolates from Tertiary Hospitals in Riyadh, Saudi Arabia
by
Alswaji, Abdulrahman A
,
Alghoribi, Majed F
,
Okdah, Liliane
in
Health aspects
,
Hospitals
,
Imipenem
2023
Uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infections (UTIs) in hospitalised and non-hospitalised patients. Genomic analysis was used to gain further insight into the molecular characteristics of UPEC isolates from Saudi Arabia. A total of 165 isolates were collected from patients with UTIs between May 2019 and September 2020 from two tertiary hospitals in Riyadh, Saudi Arabia. Identification and antimicrobial susceptibility testing (AST) were performed using the VITEK system. Extended-spectrum β-lactamase (ESBL)-producing isolates (n = 48) were selected for whole genome sequencing (WGS) analysis. In silico analysis revealed that the most common sequence types detected were ST131 (39.6%), ST1193 (12.5%), ST73 (10.4%), and ST10 (8.3%). Our finding showed that bla[sub.CTX-M-15] gene was detected in the majority of ESBL isolates (79.2%), followed by bla[sub.CTX-M-27] (12.5%) and bla[sub.CTX-M-8] (2.1%). ST131 carried bla[sub.CTX-M-15] or bla[sub.CTX-M-27], and all ST73 and ST1193 carried bla[sub.CTX-M-15]. The relatively high proportion of ST1193 in this study was notable as a newly emerged lineage in the region, which warrants further monitoring.
Journal Article
Comparative evaluation of the UMIC Colistine kit to assess MIC of colistin of gram-negative rods
by
Le Page, Stéphanie
,
Okdah, Liliane
,
Baron, Sophie Alexandra
in
Antibacterial agents
,
Colistin
,
Dosage and administration
2019
The recent description of the first plasmid-mediated colistin-resistant gene mcr-1, conferring transferable and low-level resistance to colistin, raised concern about the need to implement a rapid and reliable screening method to detect colistin-resistant clinical isolates. The only valid method to assess the MIC of colistin is the broth microdilution according to the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. UMIC Colistine is a ready-to-use broth microdilution kit developed to easily assess colistin MIC by proposing unitary polystyrene strips containing 11 concentrations of dehydrated colistin. Here, we evaluated the UMIC Colistine kit on 235 Gram-negative rods (176 Enterobacterales, including 70 harboring a mcr gene, and 59 non-fermentative), through comparison to the reference broth microdilution method prepared in accordance with EN ISO 20776-1:2006 standard. Reproducibility of the UMIC Colistine was assayed with the three recommended quality control strains E. coli ATCC 25922, E. coli NCTC 13846 (mcr-1 positive), and P. aeruginosa ATCC 27853, as for stability testing. Categorical agreement was 100% with 63.4% (n = 149) of colistin-resistant strains, and 36.6% (n = 86) of colistin-susceptible strains with both methods (S [less than or equai to] 2 [mu]g/mL and R > 2 [mu]g/mL). No major error or very major error was reported. Essential agreement was 94.0% (n = 221), and 100% for detection of colistin-resistant strains as compared to the reference method. Pearson's correlation between UMIC Colistine and the reference method was 0.98. Reproducibility of the UMIC Colistine system was 97.8% with MICs of the quality control strains within the target ranges. However, some isolates had lower MIC with UMIC Colistine, but that did not change their categorization as colistin-susceptible, and this phenomenon should be further explored. The UMIC Colistine kit is an easy to perform unitary device that showed excellent results when compared to the reference method. The UMIC Colistine system is a rapid and reliable broth microdilution method that is suitable to assess the colistin MIC of clinical isolates in clinical microbiology laboratories.
Journal Article
Genomic Characterization of Uropathogenic Escherichia coli Isolates from Tertiary Hospitals in Riyadh, Saudi Arabia
by
Okdah, Liliane
,
Balkhy, Hanan H.
,
Redhwan, Alya
in
Anti-Bacterial Agents
,
beta-Lactamases - genetics
,
Escherichia coli Infections - epidemiology
2023
Uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infections (UTIs) in hospitalised and non-hospitalised patients. Genomic analysis was used to gain further insight into the molecular characteristics of UPEC isolates from Saudi Arabia. A total of 165 isolates were collected from patients with UTIs between May 2019 and September 2020 from two tertiary hospitals in Riyadh, Saudi Arabia. Identification and antimicrobial susceptibility testing (AST) were performed using the VITEK system. Extended-spectrum β-lactamase (ESBL)-producing isolates (n = 48) were selected for whole genome sequencing (WGS) analysis. In silico analysis revealed that the most common sequence types detected were ST131 (39.6%), ST1193 (12.5%), ST73 (10.4%), and ST10 (8.3%). Our finding showed that blaCTX-M-15 gene was detected in the majority of ESBL isolates (79.2%), followed by blaCTX-M-27 (12.5%) and blaCTX-M-8 (2.1%). ST131 carried blaCTX-M-15 or blaCTX-M-27, and all ST73 and ST1193 carried blaCTX-M-15. The relatively high proportion of ST1193 in this study was notable as a newly emerged lineage in the region, which warrants further monitoring.
Journal Article