Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Okrah, Kwame"
Sort by:
Analysis and correction of compositional bias in sparse sequencing count data
Background Count data derived from high-throughput deoxy-ribonucliec acid (DNA) sequencing is frequently used in quantitative molecular assays. Due to properties inherent to the sequencing process, unnormalized count data is compositional, measuring relative and not absolute abundances of the assayed features. This compositional bias confounds inference of absolute abundances. Commonly used count data normalization approaches like library size scaling/rarefaction/subsampling cannot correct for compositional or any other relevant technical bias that is uncorrelated with library size. Results We demonstrate that existing techniques for estimating compositional bias fail with sparse metagenomic 16S count data and propose an empirical Bayes normalization approach to overcome this problem. In addition, we clarify the assumptions underlying frequently used scaling normalization methods in light of compositional bias, including scaling methods that were not designed directly to address it. Conclusions Compositional bias, induced by the sequencing machine, confounds inferences of absolute abundances. We present a normalization technique for compositional bias correction in sparse sequencing count data, and demonstrate its improved performance in metagenomic 16s survey data. Based on the distribution of technical bias estimates arising from several publicly available large scale 16s count datasets, we argue that detailed experiments specifically addressing the influence of compositional bias in metagenomics are needed.
A transcriptional MAPK Pathway Activity Score (MPAS) is a clinically relevant biomarker in multiple cancer types
KRAS - and BRAF -mutant tumors are often dependent on MAPK signaling for proliferation and survival and thus sensitive to MAPK pathway inhibitors. However, clinical studies have shown that MEK inhibitors are not uniformly effective in these cancers indicating that mutational status of these oncogenes does not accurately capture MAPK pathway activity. A number of transcripts are regulated by this pathway and are recurrently identified in genome-based MAPK transcriptional signatures. To test whether the transcriptional output of only 10 of these targets could quantify MAPK pathway activity with potential predictive or prognostic clinical utility, we created a MAPK Pathway Activity Score (MPAS) derived from aggregated gene expression. In vitro, MPAS predicted sensitivity to MAPK inhibitors in multiple cell lines, comparable to or better than larger genome-based statistical models. Bridging in vitro studies and clinical samples, median MPAS from a given tumor type correlated with cobimetinib (MEK inhibitor) sensitivity of cancer cell lines originating from the same tissue type. Retrospective analyses of clinical datasets showed that MPAS was associated with the sensitivity of melanomas to vemurafenib (HR: 0.596) and negatively prognostic of overall or progression-free survival in both adjuvant and metastatic CRC (HR: 1.5 and 1.4), adrenal cancer (HR: 1.7), and HER2+ breast cancer (HR: 1.6). MPAS thus demonstrates potential clinical utility that warrants further exploration. Biomarker: Gene signature predicts drug responses and patient outcomes A clinical score based on the activity of genes that regulate cell signaling can predict drug sensitivity and patient outcomes across a range of cancer types. Marie-Claire Wagle, Daniel Kirouac and their colleagues at Genentech in South San Francisco, California, USA developed an index that aggregates expression levels of 10 genes involved in modulating the mitogen-activated protein kinase (MAPK) pathway. This “MAPK Pathway Activity Score”, or MPAS, performed as well or better than other more complicated, genome-based tools at predicting whether drugs that inhibit MAPK-related enzymes were active against tumor cell lines. Retrospective analyses of clinical datasets also showed that MPAS correlated with survival outcomes in patients with melanoma, colon cancer, and breast cancer. The authors suggest that MPAS should be evaluated more broadly and perhaps implemented as a clinically informative biomarker.
Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection
Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our comprehensive, high resolution transcriptomic dataset provides a substantially more detailed interpretation of T. cruzi infection biology and offers a basis for future drug and vaccine discovery efforts.
Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions
Background Parasites of the genus Leishmania are the causative agents of leishmaniasis, a group of diseases that range in manifestations from skin lesions to fatal visceral disease. The life cycle of Leishmania parasites is split between its insect vector and its mammalian host, where it resides primarily inside of macrophages. Once intracellular, Leishmania parasites must evade or deactivate the host's innate and adaptive immune responses in order to survive and replicate. Results We performed transcriptome profiling using RNA-seq to simultaneously identify global changes in murine macrophage and L. major gene expression as the parasite entered and persisted within murine macrophages during the first 72 h of an infection. Differential gene expression, pathway, and gene ontology analyses enabled us to identify modulations in host and parasite responses during an infection. The most substantial and dynamic gene expression responses by both macrophage and parasite were observed during early infection. Murine genes related to both pro- and anti-inflammatory immune responses and glycolysis were substantially upregulated and genes related to lipid metabolism, biogenesis, and Fc gamma receptor-mediated phagocytosis were downregulated. Upregulated parasite genes included those aimed at mitigating the effects of an oxidative response by the host immune system while downregulated genes were related to translation, cell signaling, fatty acid biosynthesis, and flagellum structure. Conclusions The gene expression patterns identified in this work yield signatures that characterize multiple developmental stages of L. major parasites and the coordinated response of Leishmania -infected macrophages in the real-time setting of a dual biological system. This comprehensive dataset offers a clearer and more sensitive picture of the interplay between host and parasite during intracellular infection, providing additional insights into how pathogens are able to evade host defenses and modulate the biological functions of the cell in order to survive in the mammalian environment.
Shape analysis of high-throughput genomics data
RNA sequencing refers to the use of next-generation sequencing technologies to characterize the identity and abundance of target RNA species in a biological sample of interest. The recent improvement and reduction in the cost of next-generation sequencing technologies have been paralleled by the development of statistical methodologies to analyze the data they produce. Coupled with the reduction in cost is the increase in the complexity of experiments. Some of the old challenges still remain. For example the issue of normalization is important now more than ever. Some of the crude assumptions made in the early stages of RNA sequencing data analysis were necessary since the technology was new and untested, the number of replicates were small, and the experiments were relatively simple. One of the many uses of RNA sequencing experiments is the identification of genes whose abundance levels are significantly different across various biological conditions of interest. Several methods have been developed to answer this question. Some of these newly developed methods are based on the assumption that the data observed or a transformation of the data are relatively symmetric with light tails, usually summarized by assuming a Gaussian random component. It is indeed very difficult to assess this assumption for small sample sizes (e.g. sample sizes in the range of 4 to 30). In this dissertation, we utilize L-moments statistics as the basis for normalization, exploratory data analysis, the assessment of distributional assumptions, and the hypothesis testing of high-throughput transcriptomic data. In particular, we introduce a new normalization method for high-throughput transcriptomic data that is a modification of quantile normalization. We use L-moments ratios for assessing the shape (skewness and kurtosis statistics) of high-throughput transcriptome data. Based on these statistics, we propose a test for assessing whether the shapes of the observed samples differ across biological conditions. We also illustrate the utility of this framework to characterize the robustness of distributional assumptions made by statistical methods for differential expression. We apply it to RNA-seq data and find that methods based on the simple t-test for differential expression analysis using L-moments statistics as weights are robust. Finally we provide an algorithm based on L-moments ratios for identifying genes with distributions that are markedly different from the majority in the data.
Analysis And Correction Of Compositional Bias In Sparse Sequencing Count Data
Count data derived from high-throughput DNA sequencing is frequently used in quantitative molecular assays. Due to properties inherent to the sequencing process, unnormalized count data is compositional, measuring relative and not absolute abundances of the assayed features. This compositional bias confounds inference of absolute abundances. We demonstrate that existing techniques for estimating compositional bias fail with sparse metagenomic 16S count data and propose an empirical Bayes normalization approach to overcome this problem. In addition, we clarify the assumptions underlying frequently used scaling normalization methods in light of compositional bias, including scaling methods that were not designed directly to address it.
Smooth Quantile Normalization
Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and unwanted technical variation in high-throughput data. Global normalization methods are based on the assumption that observed variability in global properties is due to technical reasons and are unrelated to the biology of interest. For example, some methods correct for differences in sequencing read counts by scaling features to have similar median values across samples, but these fail to reduce other forms of unwanted technical variation. Methods such as quantile normalization transform the statistical distributions across samples to be the same and assume global differences in the distribution are induced by only technical variation. However, it remains unclear how to proceed with normalization if these assumptions are violated, for example if there are global differences in the statistical distributions between biological conditions or groups, and external information, such as negative or control features, is not available. Here we introduce a generalization of quantile normalization, referred to as smooth quantile normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample should be the same (or have the same distributional shape) within biological groups or conditions, but allowing that they may differ between groups. We illustrate the advantages of our method on several high-throughput datasets with global differences in distributions corresponding to different biological conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff of qsmooth compared to other global normalization methods. A software implementation is available from https://github.com/stephaniehicks/qsmooth.