Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Olivé, Guillem"
Sort by:
Dopamine modulates the reward experiences elicited by music
Understanding how the brain translates a structured sequence of sounds, such as music, into a pleasant and rewarding experience is a fascinating question which may be crucial to better understand the processing of abstract rewards in humans. Previous neuroimaging findings point to a challenging role of the dopaminergic system in music-evoked pleasure. However, there is a lack of direct evidence showing that dopamine function is causally related to the pleasure we experience from music. We addressed this problem through a double blind within-subject pharmacological design in which we directly manipulated dopaminergic synaptic availability while healthy participants (n = 27) were engaged in music listening. We orally administrated to each participant a dopamine precursor (levodopa), a dopamine antagonist (risperidone), and a placebo (lactose) in three different sessions. We demonstrate that levodopa and risperidone led to opposite effects in measures of musical pleasure and motivation: while the dopamine precursor levodopa, compared with placebo, increased the hedonic experience and music-related motivational responses, risperidone led to a reduction of both. This study shows a causal role of dopamine in musical pleasure and indicates that dopaminergic transmission might play different or additive roles than the ones postulated in affective processing so far, particularly in abstract cognitive activities.
Tracking the microstructural properties of the main white matter pathways underlying speech processing in simultaneous interpreters
Due to the high linguistic and cognitive demands placed on real-time language translation, professional simultaneous interpreters (SIs) have previously been proposed to serve as a reasonable model for evaluating experience-dependent brain properties. However, currently it is still unknown whether intensive language training during adulthood might be reflected in microstructural changes in language-related white matter pathways contributing to sound-to-meaning mapping, auditory-motor integration, and verbal memory functions. Accordingly, we used a fully automated probabilistic tractography algorithm and compared the white matter microstructure of the bilateral inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and arcuate fasciculus (AF, long and anterior segments) between professional SIs and multilingual control participants. In addition, we classically re-evaluated the three constitutional elements of the AF (long, anterior, and posterior segments) using a deterministic manual dissection procedure. Automated probabilistic tractography demonstrated overall reduced mean fractional anisotropy (FA) and increased radial diffusivity (RD) in SIs in the fiber tracts of the left hemisphere (LH). Furthermore, SIs exhibited reduced mean FA in the bilateral AF. However, according to manual dissection, this effect was limited to the anterior AF segment and accompanied by increased mean RD. Deterministic AF reconstruction also uncovered increased mean FA in the right and RD in the left long AF segment in SIs compared to controls. These results point to a relationship between simultaneous interpreting and white matter organization of pathways underlying speech and language processing in the language-dominant LH as well as of the AF. •We used automated probabilistic and manual deterministic tractography.•We compared the main language-related pathways between SIs and multilinguals.•We revealed between-group differences in the left-hemispheric pathways and in the AF.•Deterministic and probabilistic results were similar but not identical.•Results highlight the white matter pathways underlying language expertise.
Structural connectivity in ventral language pathways characterizes non-verbal autism
Language capacities in autism spectrum disorders (ASD) range from normal scores on standardized language tests to absence of functional language in a substantial minority of 30% of individuals with ASD. Due to practical difficulties of scanning at this severe end of the spectrum, insights from MRI are scarce. Here we used manual deterministic tractography to investigate, for the first time, the integrity of the core white matter tracts defining the language connectivity network in non-verbal ASD (nvASD): the three segments of the arcuate (AF), the inferior fronto-occipital (IFOF), the inferior longitudinal (ILF) and the uncinate (UF) fasciculi, and the frontal aslant tract (FAT). A multiple case series of nine individuals with nvASD were compared to matched individuals with verbal ASD (vASD) and typical development (TD). Bonferroni-corrected repeated measure ANOVAs were performed separately for each tract—Hemisphere (2:Left/Right) × Group (3:TD/vASD/nvASD). Main results revealed (i) a main effect of group consisting in a reduction in fractional anisotropy (FA) in the IFOF in nvASD relative to TD; (ii) a main effect of group revealing lower values of radial diffusivity (RD) in the long segment of the AF in nvASD compared to vASD group; and (iii) a reduced volume in the left hemisphere of the UF when compared to the right, in the vASD group only. These results do not replicate volumetric differences of the dorsal language route previously observed in nvASD, and instead point to a disruption of the ventral language pathway, in line with semantic deficits observed behaviourally in this group.
The right uncinate fasciculus supports verbal short-term memory in aphasia
Verbal short-term memory (STM) deficits are associated with language processing impairments in people with aphasia. Importantly, the integrity of STM can predict word learning ability and anomia therapy gains in aphasia. While the recruitment of perilesional and contralesional homologous brain regions has been proposed as a possible mechanism for aphasia recovery, little is known about the white-matter pathways that support verbal STM in post-stroke aphasia. Here, we investigated the relationships between the language-related white matter tracts and verbal STM ability in aphasia. Nineteen participants with post-stroke chronic aphasia completed a subset of verbal STM subtests of the TALSA battery including nonword repetition (phonological STM), pointing span (lexical-semantic STM without language output) and repetition span tasks (lexical-semantic STM with language output). Using a manual deterministic tractography approach, we investigated the micro- and macrostructural properties of the structural language network. Next, we assessed the relationships between individually extracted tract values and verbal STM scores. We found significant correlations between volume measures of the right Uncinate Fasciculus and all three verbal STM scores, with the association between the right UF volume and nonword repetition being the strongest one. These findings suggest that the integrity of the right UF is associated with phonological and lexical-semantic verbal STM ability in aphasia and highlight the potential compensatory role of right-sided ventral white matter language tracts in supporting verbal STM after aphasia-inducing left hemisphere insult.
Dopamine modulates the reward experiences elicited by music
Significance In everyday life humans regularly seek participation in highly complex and pleasurable experiences such as music listening, singing, or playing, that do not seem to have any specific survival advantage. The question addressed here is to what extent dopaminergic transmission plays a direct role in the reward experience (both motivational and hedonic) induced by music. We report that pharmacological manipulation of dopamine modulates musical responses in both positive and negative directions, thus showing that dopamine causally mediates musical reward experience.