Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Language
    • Place of Publication
    • Contributors
    • Location
7,653 result(s) for "Oliver, M. J."
Sort by:
A continuum model for the elongation and orientation of Von Willebrand factor with applications in arterial flow
The blood protein Von Willebrand factor (VWF) is critical in facilitating arterial thrombosis. At pathologically high shear rates, the protein unfolds and binds to the arterial wall, enabling the rapid deposition of platelets from the blood. We present a novel continuum model for VWF dynamics in flow based on a modified viscoelastic fluid model that incorporates a single constitutive relation to describe the propensity of VWF to unfold as a function of the scalar shear rate. Using experimental data of VWF unfolding in pure shear flow, we fix the parameters for VWF’s unfolding propensity and the maximum VWF length, so that the protein is half unfolded at a shear rate of approximately 5000 s - 1 . We then use the theoretical model to predict VWF’s behaviour in two complex flows where experimental data are challenging to obtain: pure elongational flow and stenotic arterial flow. In pure elongational flow, our model predicts that VWF is 50% unfolded at approximately 2000 s - 1 , matching the established hypothesis that VWF unfolds at lower shear rates in elongational flow than in shear flow. We demonstrate the sensitivity of this elongational flow prediction to the value of maximum VWF length used in the model, which varies significantly across experimental studies, predicting that VWF can unfold between 2000 and 3200 s - 1 depending on the selected value. Finally, we examine VWF dynamics in a range of idealised arterial stenoses, predicting the relative extension of VWF in elongational flow structures in the centre of the artery compared to high shear regions near the arterial walls.
Home care assistance and the utilization of peritoneal dialysis
Peritoneal dialysis (PD) may be declining because the elderly often have barriers to self-care PD. The objective of this study was to determine whether the availability of home care increases utilization of PD. In 134 incident chronic dialysis patients (median age 73), 108 (81%) had at least one medical or social condition, which was a potential barrier to self-care PD. Eighty percent of patients living in regions where home care was available were considered eligible for PD compared to 65% in regions without home care (P=0.01, adjusted). Each barrier reduced the probability of being eligible for PD by 26% (odds ratio 0.74, per condition, P=0.02) adjusted for age, sex, predialysis care, in-patient start, and availability of home care. In regions with and without home care, 59 and 58% of eligible patients choose PD when they were offered it (P=NS). The utilization of PD in the incident end-stage renal disease (ESRD) population living in regions with and without home care was 47 and 37%, respectively (P=0.27). The mean rate of home care visits over the first year was 4.3 per week (maximum available was 14 per week). Of the 22 assisted patients, 15 required chronic support, five graduated to self-care, and two started with self-care but later required assistance. Adverse events were similar between assisted PD and traditional modalities. Barriers to self-care PD are very common in the elderly ESRD population but home care assistance significantly increases the number of patients who can be safely offered PD.
Three-dimensional oblique water-entry problems at small deadrise angles
This paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets.
Spatial ecology of Carcharias taurus in the northwestern Mid-Atlantic coastal ocean
The sand tiger shark Carcharias taurus is a highly migratory coastal species with declining populations worldwide. This species exhibits many behaviors that make coastal sharks difficult to manage, including aggregatory behavior, sexual segregation, and large-scale migrations through shallow coastal waters with many opportunities for human interactions. Sand tigers from the Western North Atlantic subpopulation are known to seasonally inhabit Delaware Bay and surrounding coastal waters. This region has been recommended as a habitat area of particular concern for the Western North Atlantic sand tiger population, and increased understanding of their movements and habitat requirements will facilitate management efforts. We developed models to predict sand tiger occupancy using spatially dynamic environmental predictors. Our models predicted sand tiger (juveniles, adult males, adult females, and all sharks combined) occurrences in 2 study regions, the Delaware Bay and the western Mid-Atlantic coastal ocean. Sea surface temperature, day of year, water depth, and remote sensing reflectance at 555 nm were the most important environmental predictors of occurrence, and correctly predicted 80–89% of sand tiger acoustic telemetry records in the 2 study regions. Our models predicted differences in the timing and location of occurrences among juveniles and adults, as well as areas where these life history stages overlap in the Mid-Atlantic coastal ocean. Our hope is that a daily forecast of sand tiger occurrence from our modeling efforts could be useful for conservation and management efforts in this important region, as well as for studying the spatial and behavioral ecology of this important top predator.
Desiccation Tolerance in Bryophytes: A Reflection of the Primitive Strategy for Plant Survival in Dehydrating Habitats?
Bryophytes are a non-monophyletic group of three major lineages (liverworts, hornworts, and mosses) that descend from the earliest branching events in the phylogeny of land plants. We postulate that desiccation tolerance is a primitive trait, thus mechanisms by which the first land plants achieved tolerance may be reflected in how extant desiccation-tolerant bryophytes survive drying. Evidence is consistent with extant bryophytes employing a tolerance strategy of constitutive cellular protection coupled with induction of a recovery/repair mechanism upon rehydration. Cellular structures appear intact in the desiccated state but are disrupted by rapid uptake of water upon rehydration, but cellular integrity is rapidly regained. The photosynthetic machinery appears to be protected such that photosynthetic activity recovers quickly. Gene expression responds following rehydration and not during drying. Gene expression is translationally controlled and results in the synthesis of a number of proteins, collectively called rehydrins. Some prominent rehydrins are similar to Late Embryogenesis Abundant (LEA) proteins, classically ascribed a protection function during desiccation. The role of LEA proteins in a rehydrating system is unknown but data indicates a function in stabilization and reconstitution of membranes. Phylogenetic studies using a Tortula ruralis LEA-like rehydrin led to a re-examination of the evolution of desiccation tolerance. A new phylogenetic analysis suggests that: (i) the basic mechanisms of tolerance seen in modern day bryophytes have changed little from the earliest manifestations of desiccation tolerance in land plants, and (ii) vegetative desiccation tolerance in the early land plants may have evolved from a mechanism present first in spores.
Second-order Wagner theory for two-dimensional water-entry problems at small deadrise angles
The theory of Wagner from 1932 for the normal symmetric impact of a two-dimensional body of small deadrise angle on a half-space of ideal and incompressible liquid is extended to derive the second-order corrections for the locations of the higher-pressure jet-root regions and for the upward force on the impactor using a systematic matched-asymptotic analysis. The second-order predictions for the upward force on an entering wedge and parabola are compared with numerical and experimental data, respectively, and it is concluded that a significant improvement in the predictive capability of Wagner's theory is afforded by proceeding to second order.
PREVENTION-ACHD: PRospEctiVE study on implaNTable cardioverter-defibrillator therapy and suddeN cardiac death in Adults with Congenital Heart Disease; Rationale and Design
Background Many adult congenital heart disease (ACHD) patients are at risk of sudden cardiac death (SCD). An implantable cardioverter-defibrillator (ICD) may prevent SCD, but the evidence for primary prevention indications is still unsatisfactory. Study Design PREVENTION-ACHD is a prospective study with which we aim to prospectively validate a new risk score model for primary prevention of SCD in ACHD patients, as well as the currently existing guideline recommendations. Patients are screened using a novel risk score to predict SCD as well as current ICD indications according to an international Consensus Statement. Patients are followed up for two years. The primary endpoint is the occurrence of SCD and sustained ventricular arrhythmias. The Study was registered at ClinicalTrials.gov (NCT03957824). Conclusion PREVENTION-ACHD is the first prospective study on SCD in ACHD patients. In the light of a growing and aging population of patients with more severe congenital heart defects, more robust clinical evidence on primary prevention of SCD is urgently needed.
Habitat selection of a coastal shark species estimated from an autonomous underwater vehicle
Quantifying habitat selection in marine organisms is challenging because it is difficult to obtain species location information with multiple corresponding habitat measurements. In the ocean, habitat conditions vary on many spatiotemporal scales, which have important consequences for habitat selection. While macroscale biotic and abiotic features influence seasonal movements (spatial scales of 100–1000 km), selectivity of conditions on mesoscales (1–100 km) reflects an animal’s response to the local environment. In this study, we examined habitat selectivity by pairing acoustic telemetry with environmental habitat parameters measured by an autonomous underwater vehicle (AUV), and demonstrate that migrating sand tiger sharks Carcharias taurus along the East Coast of the USA did not randomly use the coastal environment. Of the variables examined, we found evidence to suggest that sand tigers were selecting their habitat based on distance to shore, salinity, and colored dissolved organic matter (CDOM). Notably, temperature was not predictive of habitat use in our study. We posit that during their coastal migration, sand tigers select for specific mesoscale coastal habitats that may inform navigation or feeding behaviors. To our knowledge, this is the first empirical measure of mesoscale habitat selection by a coastal marine organism using an AUV. The applications of this method extend beyond the habitat selectivity of sand tigers, and will prove useful for future studies combining in situ observations of marine habitats and animal observations.
The nascent coffee ring: how solute diffusion counters advection
We study the initial evolution of the coffee ring that is formed by the evaporation of a thin, axisymmetric, surface-tension-dominated droplet containing a dilute solute. When the solutal Péclet number is large, we show that diffusion close to the droplet contact line controls the coffee-ring structure in the initial stages of evaporation. We perform a systematic matched asymptotic analysis for two evaporation models – a simple, non-equilibrium, one-sided model (in which the evaporative flux is taken to be constant across the droplet surface) and a vapour-diffusion limited model (in which the evaporative flux is singular at the contact line) – valid during the early stages in which the solute remains dilute. We call this the ‘nascent coffee ring’ and describe the evolution of its features, including the size and location of the peak concentration and a measure of the width of the ring. Moreover, we use the asymptotic results to investigate when the assumption of a dilute solute breaks down and the effects of finite particle size and jamming are expected to become important. In particular, we illustrate the limited validity of this model in the diffusive evaporative flux regime.