Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
311 result(s) for "Olson, Gregory S."
Sort by:
Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction
Innate immune cells play important roles in tissue injury and repair following acute myocardial infarction (MI). Although reprogramming of macrophage metabolism has been observed during inflammation and resolution phases, the mechanistic link to macrophage phenotype is not fully understood. In this study, we found that myeloid-specific deletion (mKO) of mitochondrial complex I protein, encoded by Ndufs4, reproduced the proinflammatory metabolic profile in macrophages and exaggerated the response to LPS. Moreover, mKO mice showed increased mortality, poor scar formation, and worsened cardiac function 30 days after MI. We observed a greater inflammatory response in mKO mice on day 1 followed by increased cell death of infiltrating macrophages and blunted transition to the reparative phase during post-MI days 3-7. Efferocytosis was impaired in mKO macrophages, leading to lower expression of antiinflammatory cytokines and tissue repair factors, which suppressed the proliferation and activation of myofibroblasts in the infarcted area. Mitochondria-targeted ROS scavenging rescued these impairments, improved myofibroblast function in vivo, and reduced post-MI mortality in mKO mice. Together these results reveal a critical role of mitochondria in inflammation resolution and tissue repair via modulation of efferocytosis and crosstalk with fibroblasts. These findings have potential significance for post-MI recovery as well as for other inflammatory conditions.
Transferred mitochondria accumulate reactive oxygen species, promoting proliferation
Recent studies reveal that lateral mitochondrial transfer, the movement of mitochondria from one cell to another, can affect cellular and tissue homeostasis. Most of what we know about mitochondrial transfer stems from bulk cell studies and have led to the paradigm that functional transferred mitochondria restore bioenergetics and revitalize cellular functions to recipient cells with damaged or non-functional mitochondrial networks. However, we show that mitochondrial transfer also occurs between cells with functioning endogenous mitochondrial networks, but the mechanisms underlying how transferred mitochondria can promote such sustained behavioral reprogramming remain unclear. We report that unexpectedly, transferred macrophage mitochondria are dysfunctional and accumulate reactive oxygen species in recipient cancer cells. We further discovered that reactive oxygen species accumulation activates ERK signaling, promoting cancer cell proliferation. Pro-tumorigenic macrophages exhibit fragmented mitochondrial networks, leading to higher rates of mitochondrial transfer to cancer cells. Finally, we observe that macrophage mitochondrial transfer promotes tumor cell proliferation in vivo. Collectively these results indicate that transferred macrophage mitochondria activate downstream signaling pathways in a ROS-dependent manner in cancer cells, and provide a model of how sustained behavioral reprogramming can be mediated by a relatively small amount of transferred mitochondria in vitro and in vivo.
Contained Mycobacterium tuberculosis infection induces concomitant and heterologous protection
Progress in tuberculosis vaccine development is hampered by an incomplete understanding of the immune mechanisms that protect against infection with Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. Although the M72/ASOE1 trial yielded encouraging results (54% efficacy in subjects with prior exposure to Mtb), a highly effective vaccine against adult tuberculosis remains elusive. We show that in a mouse model, establishment of a contained and persistent yet non-pathogenic infection with Mtb (\"contained Mtb infection\", CMTB) rapidly and durably reduces tuberculosis disease burden after re-exposure through aerosol challenge. Protection is associated with elevated activation of alveolar macrophages, the first cells that respond to inhaled Mtb, and accelerated recruitment of Mtb-specific T cells to the lung parenchyma. Systems approaches, as well as ex vivo functional assays and in vivo infection experiments, demonstrate that CMTB reconfigures tissue resident alveolar macrophages via low grade interferon-γ exposure. These studies demonstrate that under certain circumstances, the continuous interaction of the immune system with Mtb is beneficial to the host by maintaining elevated innate immune responses.
Transcriptional networks are associated with resistance to Mycobacterium tuberculosis infection
Understanding mechanisms of resistance to M. tuberculosis (M.tb) infection in humans could identify novel therapeutic strategies as it has for other infectious diseases, such as HIV. To compare the early transcriptional response of M.tb-infected monocytes between Ugandan household contacts of tuberculosis patients who demonstrate clinical resistance to M.tb infection (cases) and matched controls with latent tuberculosis infection. Cases (n = 10) and controls (n = 18) were selected from a long-term household contact study in which cases did not convert their tuberculin skin test (TST) or develop tuberculosis over two years of follow up. We obtained genome-wide transcriptional profiles of M.tb-infected peripheral blood monocytes and used Gene Set Enrichment Analysis and interaction networks to identify cellular processes associated with resistance to clinical M.tb infection. We discovered gene sets associated with histone deacetylases that were differentially expressed when comparing resistant and susceptible subjects. We used small molecule inhibitors to demonstrate that histone deacetylase function is important for the pro-inflammatory response to in-vitro M.tb infection in human monocytes. Monocytes from individuals who appear to resist clinical M.tb infection differentially activate pathways controlled by histone deacetylase in response to in-vitro M.tb infection when compared to those who are susceptible and develop latent tuberculosis. These data identify a potential cellular mechanism underlying the clinical phenomenon of resistance to M.tb infection despite known exposure to an infectious contact.
Association between injectable progestin-only contraceptives and HIV acquisition and HIV target cell frequency in the female genital tract in South African women: a prospective cohort study
The use of injectable progestin-only contraceptives has been associated with increased risk of HIV acquisition in observational studies, but the biological mechanisms of this risk remain poorly understood. We aimed to assess the effects of progestins on HIV acquisition risk and the immune environment in the female genital tract. In this prospective cohort, we enrolled HIV-negative South African women aged 18–23 years who were not pregnant and were living in Umlazi, South Africa from the Females Rising through Education, Support, and Health (FRESH) study. We tested for HIV-1 twice per week to monitor incident infection. Every 3 months, we collected demographic and behavioural data in addition to blood and cervical samples. The study objective was to characterise host immune determinants of HIV acquisition risk, including those associated with injectable progestin-only contraceptive use. Hazard ratios (HRs) were estimated using Cox proportional hazards methods. Between Nov 19, 2012, and May 31, 2015, we characterised 432 HIV-uninfected South African women from the FRESH study. In this cohort, 152 women used injectable progestin-only contraceptives, 43 used other forms of contraception, and 222 women used no method of long-term contraception. Women using injectable progestin-only contraceptives were at substantially higher risk of acquiring HIV (12·06 per 100 person-years, 95% CI 6·41–20·63) than women using no long-term contraception (3·71 per 100 person-years, 1·36–8·07; adjusted hazard ratio [aHR] 2·93, 95% CI 1·09–7·868, p=0·0326). HIV-negative injectable progestin-only contraceptive users had 3·92 times the frequency of cervical HIV target cells (CCR5+ CD4 T cells) compared with women using no long-term contraceptive (p=0·0241). Women using no long-term contraceptive in the luteal phase of the menstrual cycle also had a 3·25 times higher frequency of cervical target cells compared with those in the follicular phase (p=0·0488), suggesting that a naturally high progestin state had similar immunological effects to injectable progestin-only contraceptives. Injectable progestin-only contraceptive use and high endogenous progesterone are both associated with increased frequency of activated HIV targets cells at the cervix, the site of initial HIV entry in most women, providing a possible biological mechanism underlying increased HIV acquisition in women with high progestin exposure. The Bill and Melinda Gates Foundation and the National Institute of Allergy and Infectious Diseases.
Diagnosis of latent tuberculosis infection is associated with reduced HIV viral load and lower risk for opportunistic infections in people living with HIV
Approximately 28% of the human population have been exposed to Mycobacterium tuberculosis (MTB), with the overwhelming majority of infected individuals not developing disease (latent TB infection (LTBI)). While it is known that uncontrolled HIV infection is a major risk factor for the development of TB, the effect of underlying LTBI on HIV disease progression is less well characterized, in part because longitudinal data are lacking. We sorted all participants of the Swiss HIV Cohort Study (SHCS) with at least 1 documented MTB test into one of the 3 groups: MTB uninfected, LTBI, or active TB. To detect differences in the HIV set point viral load (SPVL), linear regression was used; the frequency of the most common opportunistic infections (OIs) in the SHCS between MTB uninfected patients, patients with LTBI, and patients with active TB were compared using logistic regression and time-to-event analyses. In adjusted models, we corrected for baseline demographic characteristics, i.e., HIV transmission risk group and gender, geographic region, year of HIV diagnosis, and CD4 nadir. A total of 13,943 SHCS patients had at least 1 MTB test documented, of whom 840 (6.0%) had LTBI and 770 (5.5%) developed active TB. Compared to MTB uninfected patients, LTBI was associated with a 0.24 decreased log HIV SPVL in the adjusted model ( p < 0.0001). Patients with LTBI had lower odds of having candida stomatitis (adjusted odds ratio (OR) = 0.68, p = 0.0035) and oral hairy leukoplakia (adjusted OR = 0.67, p = 0.033) when compared to MTB uninfected patients. The association of LTBI with a reduced HIV set point virus load and fewer unrelated infections in HIV/TB coinfected patients suggests a more complex interaction between LTBI and HIV than previously assumed.
Increased frequency of systemic pro-inflammatory Vδ1+ γδ T cells in HIV elite controllers correlates with gut viral load
γδ T cells predominate in the intestinal mucosa and help maintain gut homeostasis and mucosal immunity. Although HIV infection significantly alters these cells, what drives these perturbations is unclear. Growing evidence suggests that impaired intestinal immune function in HIV leads to chronic immune activation and disease progression. This occurs even in HIV controllers – individuals with undetectable HIV viremia without antiretroviral therapy (ART). We show that Vδ1 + cells, a subset of γδ T cells described as being important in intestinal barrier function, increase in frequency in HIV-infected individuals, including HIV controllers. These cells resemble terminally differentiated effector memory cells, producing the pro-inflammatory cytokines IFNγ, TNFα, and MIP-1β upon stimulation. Importantly, pro-inflammatory Vδ1 + cell frequency correlates with levels of HIV RNA in intestinal tissue but not in plasma. This study supports a model in which local viral replication in the gut in HIV controllers disrupts the phenotype and function of Vδ1 + cells, a cell type involved in the maintenance of epithelial barrier integrity, and may thereby contribute to systemic immune activation and HIV disease progression.
c-Myc inhibits macrophage antimycobacterial response in Mycobacterium tuberculosis infection
(MTB) is a major global cause of mortality worldwide, responsible for over a million deaths annually. Despite this burden, natural immunity prevents disease in more than 90% of exposed individuals. Previous studies have identified interferon-gamma (IFN-γ) as a key regulator of innate immune defense against MTB. Here, we investigate the impact of IFN-γ timing on macrophage-mediated control of MTB infection. We demonstrate that IFN-γ exposure before infection enhances macrophage antibacterial activity, whereas post-infection exposure does not. Further investigation into this phenotype revealed a strong association between c-Myc signaling and macrophage function in MTB control, as identified using unbiased in vitro systems approaches. Given the challenge of perturbing c-Myc in primary cells, we developed a lentiviral system for c-Myc inhibition and overexpression. Using a tetracycline-inducible Omomyc system - a small peptide inhibitor of c-Myc - we show that c-Myc inhibition promotes a pro-inflammatory macrophage phenotype with enhanced antimycobacterial activity. Mechanistically, c-Myc inhibition induces metabolic reprogramming via increased mTORC1 activity, leading to upregulated inducible nitric oxide synthase and improved bacterial control. In vivo analyses, including murine models and human clinical histopathology, reveal a strong correlation between c-Myc expression and MTB persistence, as well as active tuberculosis (TB), suggesting a role for c-Myc in immune evasion. These findings reveal c-Myc as a potential mediator of immune privilege in MTB infection and highlight its role as a promising target for novel TB therapies aimed at enhancing macrophage function.
Latent Mycobacterium tuberculosis infection provides protection for the host by changing the activation state of the innate immune system
An efficacious vaccine against adult tuberculosis (TB) remains elusive. Progress is hampered by an incomplete understanding of the immune mechanisms that protect against infection with Mycobacterium tuberculosis (Mtb), the causative agent of TB. Over 90% of people who become infected with Mtb mount an immune response that contains the bacteria indefinitely, leading to a state known as latent TB infection (LTBI). A significant body of epidemiologic evidence indicates that LTBI protects against active TB after re-exposure, offering an intriguing avenue to identifying protective mechanisms. We show that in a mouse model, LTBI is highly protective against infection with Mtb for up to 100 days following aerosol challenge. LTBI mice are also protected against heterologous bacterial challenge (Listeria monocytogenes) and disseminated melanoma suggesting that protection is in part mediated by alterations in the activation state of the innate immune system. Protection is associated with elevated activation of alveolar macrophages (AM), the first cells that respond to inhaled Mtb, and accelerated recruitment of Mtb-specific T cells to the lung parenchyma upon aerosol challenge. Systems approaches, including transcriptome analysis of both naive and infected AMs, as well as ex vivo functional assays, demonstrate that LTBI reconfigures the response of tissue resident AMs. Furthermore, we demonstrate that both LTBI mice and latently infected humans show similar alterations in the relative proportions of circulating innate immune cells, suggesting that the same cellular changes observed in the LTBI mouse model are also occurring in humans. Therefore, we argue that under certain circumstances, LTBI could be beneficial to the host by providing protection against subsequent Mtb exposure.
Laterally transferred macrophage mitochondria acts as a signaling source promoting cancer cell proliferation
Lateral transfer of mitochondria occurs in many physiological and pathological conditions. Given that mitochondria provide essential energy for cellular activities, mitochondrial transfer is currently thought to promote the rescue of damaged cells. We report that mitochondrial transfer occurs between macrophages and breast cancer cells, leading to increased cancer cell proliferation. Unexpectedly, transferred macrophage mitochondria are dysfunctional, lacking mitochondrial membrane potential. Rather than performing essential mitochondrial activities, transferred mitochondria accumulate reactive oxygen species which activates ERK signaling, indicating that transferred mitochondria act as a signaling source that promotes cancer cell proliferation. We also demonstrate that pro-tumorigenic M2-like macrophages exhibit increased mitochondrial transfer to cancer cells. Collectively, our findings reveal how mitochondrial transfer is regulated and leads to sustained functional changes in recipient cells. Competing Interest Statement University of Utah may license PDxO models to for-profit companies, which may result in tangible property royalties to members of the Welm lab (SDS and ALW). The other authors declare that they have no competing interests. Footnotes * https://github.com/Zangle-Lab/Macrophage_tumor_mito_transfer * https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181410 * https://github.com/rohjohnson-lab/kidwell_casalini_2021