Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
8
result(s) for
"Omarzadeh, Davoud"
Sort by:
Scenario-based analysis of the impacts of lake drying on food production in the Lake Urmia Basin of Northern Iran
by
Lakes, Tobia
,
Sharifi, Ayyoob
,
Omarzadeh, Davoud
in
500 Naturwissenschaften und Mathematik
,
600 Technik und Technologie
,
692/163
2022
In many parts of the world, lake drying is caused by water management failures, while the phenomenon is exacerbated by climate change. Lake Urmia in Northern Iran is drying up at such an alarming rate that it is considered to be a dying lake, which has dire consequences for the whole region. While salinization caused by a dying lake is well understood and known to influence the local and regional food production, other potential impacts by dying lakes are as yet unknown. The food production in the Urmia region is predominantly regional and relies on local water sources. To explore the current and projected impacts of the dying lake on food production, we investigated changes in the climatic conditions, land use, and land degradation for the period 1990–2020. We examined the environmental impacts of lake drought on food production using an integrated scenario-based geoinformation framework. The results show that the lake drought has significantly affected and reduced food production over the past three decades. Based on a combination of cellular automaton and Markov modeling, we project the food production for the next 30 years and predict it will reduce further. The results of this study emphasize the critical environmental impacts of the Urmia Lake drought on food production in the region. We hope that the results will encourage authorities and environmental planners to counteract these issues and take steps to support food production. As our proposed integrated geoinformation approach considers both the extensive impacts of global climate change and the factors associated with dying lakes, we consider it to be suitable to investigate the relationships between environmental degradation and scenario-based food production in other regions with dying lakes around the world.
Journal Article
Health effects of shrinking hyper-saline lakes: spatiotemporal modeling of the Lake Urmia drought on the local population, case study of the Shabestar County
2023
Climate change and its respective environmental impacts, such as dying lakes, is widely acknowledged. Studies on the impact of shrinking hyper-saline lakes suggest severe negative consequences for the health of the affected population. The primary aim was to investigate the relationship between changes in the water level of the hyper-saline Lake Urmia, along with the associated salt release, and the prevalence of hypertension and the general state of health of the local population in Shabestar County north of the lake. Moreover, we sought to map the vulnerability of the local population to the health risks associated with salt-dust scatter using multiple environmental and demographic characteristics. We applied a spatiotemporal analysis of the environmental parameters of Lake Urmia and the health of the local population. We analyzed health survey data from local health care centers and a national STEPS study in Shabestar County, Iran. We used a time-series of remote sensing images to monitor the trend of occurrence and extent of salt-dust storms between 2012 and 2020. To evaluate the impacts of lake drought on the health of the residences, we investigated the spatiotemporal correlation of the lake drought and the state of health of local residents. We applied a GIScience multiple decision analysis to identify areas affected by salt-dust particles and related these to the health status of the residents. According to our results, the lake drought has significantly contributed to the increasing cases of hypertension in local patients. The number of hypertensive patients has increased from 2.09% in 2012 to 19.5% in 2019 before decreasing slightly to 16.05% in 2020. Detailed results showed that adults, and particularly females, were affected most by the effects of the salt-dust scatter in the residential areas close to the lake. The results of this study provide critical insights into the environmental impacts of the Lake Urmia drought on the human health of the residents. Based on the results we suggest that detailed socioeconomic studies might be required for a comprehensive analysis of the human health issues in this area. Nonetheless, the proposed methods can be applied to monitor the environmental impacts of climate change on human health.
Journal Article
Earthquake Aftermath from Very High-Resolution WorldView-2 Image and Semi-Automated Object-Based Image Analysis (Case Study: Kermanshah, Sarpol-e Zahab, Iran)
by
Omarzadeh, Davoud
,
Matsuoka, Masashi
,
Karimzadeh, Sadra
in
Algorithms
,
Automation
,
Canned food
2021
This study aimed to classify an urban area and its surrounding objects after the destructive M7.3 Kermanshah earthquake (12 November 2017) in the west of Iran using very high-resolution (VHR) post-event WorldView-2 images and object-based image analysis (OBIA) methods. The spatial resolution of multispectral (MS) bands (~2 m) was first improved using a pan-sharpening technique that provides a solution by fusing the information of the panchromatic (PAN) and MS bands to generate pan-sharpened images with a spatial resolution of about 50 cm. After applying a segmentation procedure, the classification step was considered as the main process of extracting the aimed features. The aforementioned classification method includes applying spectral and shape indices. Then, the classes were defined as follows: type 1 (settlement area) was collapsed areas, non-collapsed areas, and camps; type 2 (vegetation area) was orchards, cultivated areas, and urban green spaces; and type 3 (miscellaneous area) was rocks, rivers, and bare lands. As OBIA results in the integration of the spatial characteristics of the image object, we also aimed to evaluate the efficiency of object-based features for damage assessment within the semi-automated approach. For this goal, image context assessment algorithms (e.g., textural parameters, shape, and compactness) together with spectral information (e.g., brightness and standard deviation) were applied within the integrated approach. The classification results were satisfactory when compared with the reference map for collapsed buildings provided by UNITAR (the United Nations Institute for Training and Research). In addition, the number of temporary camps was counted after applying OBIA, indicating that 10,249 tents or temporary shelters were established for homeless people up to 17 November 2018. Based on the total damaged population, the essential resources such as emergency equipment, canned food and water bottles can be estimated. The research makes a significant contribution to the development of remote sensing science by means of applying different object-based image-analyzing techniques and evaluating their efficiency within the semi-automated approach, which, accordingly, supports the efficient application of these methods to other worldwide case studies.
Journal Article
Impacts of the Urmia Lake Drought on Soil Salinity and Degradation Risk: An Integrated Geoinformatics Analysis and Monitoring Approach
by
Mohammadzadeh Alajujeh, Keyvan
,
Omarzadeh, Davoud
,
Blaschke, Thomas
in
Agricultural land
,
Climate change
,
Decision making
2022
Recent improvements in earth observation technologies and Geographical Information System (GIS) based spatial analysis methods require us to examine the efficiency of the different data-driven methods and decision rules for soil salinity monitoring and degradation mapping. The main objective of this study was to analyze the environmental impacts of the Lake Urmia drought on soil salinity and degradation risk in the plains surrounding the hyper-saline lake. We monitored the impacts of the lake drought on soil salinity by applying spatiotemporal indices to time-series satellite images (1990–2020) in Google Earth Engine environment. We also computed the soil salinity ratio to validate the results and determine the most efficient soil salinity monitoring techniques. We then mapped the soil degradation risk based on GIS spatial decision-making methods. Our results indicated that the Urmia Lake drought is leading to the formation of extensive salt lands, which impact the fertility of the farmlands. The land affected by soil salinity has increased from 2.86% in 1990 to 16.68% in 2020. The combined spectral response index, with a performance of 0.95, was the most efficient image processing method to assess soil salinity. The soil degradation risk map showed that 38.45% of the study area has a high or very high risk of degradation, which is a significant threat to food production. This study presents an integrated geoinformation approach for time-series soil salinity monitoring and degradation risk mapping that supports future studies by comparing the efficiency of different methods as state of the art. From a practical perspective, the results also provide key information for decision-makers, authorities, and local stakeholders in their efforts to mitigate the environmental impacts of lake drought and sustain the food production to sustain the 7.3 million residents.
Journal Article
Explainable Automatic Detection of Fiber–Cement Roofs in Aerial RGB Images
2024
Following European directives, asbestos–cement corrugated roofing tiles must be eliminated by 2025. Therefore, identifying asbestos–cement rooftops is the first necessary step to proceed with their removal. Unfortunately, asbestos detection is a challenging task. Current procedures for identifying asbestos require human exploration, which is costly and slow. This has motivated the interest of governments and companies in developing automatic tools that can help to detect and classify these types of materials that are dangerous to the population. This paper explores multiple computer vision techniques based on Deep Learning to advance the automatic detection of asbestos in aerial images. On the one hand, we trained and tested two classification architectures, obtaining high accuracy levels. On the other, we implemented an explainable AI method to discern what information in an RGB image is relevant for a successful classification, ensuring that our classifiers’ learning process is guided by the right variables—color, surface patterns, texture, etc.—observable on asbestos rooftops.
Journal Article
An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran
by
Seyyed Samad Hosseini
,
Samereh Pourmoradian
,
Naser Sanobuar
in
business
,
Carpets
,
cultural heritage
2021
A handmade carpet is one of the most well-known handcrafts around the world. Iranian handmade carpets are known as luxury products in domestic and international markets due to their strength and product value. The main objective of this research is to apply a geographical information system (GIS)-based, spatially-explicit approach to assess the sustainability of handmade carpet production in the East Azerbaijan Province of Iran, which is internationally famous for the diversity and quality of its handmade carpets. To achieve this goal, we employed 23 criteria in four main clusters: population characteristics, education status, employment status, and business activities related to the carpet industry. In order to determine the significance of each criterion, an integrated approach of fuzzy and network analysis processes was applied. Accordingly, the GIS aggregation function was employed to map and identify the areas that are suitable and of high potential for handmade carpet production. The results indicate that there is a very high potential for handmade carpet production in some areas of Tabriz, Osku, Marageh, Heris, and Meyaneh counties. However, high sustainability also extends to some areas in Marand, Bonab, and Kalaybar counties. The obtained maps present the potential of each city and village for handmade carpet production. The research also aims to evaluate and suggest relevant policies and practices to overcome the identified challenges in order to promote, develop, and preserve the handmade carpet sector. The results of this research are of great importance for different stakeholders in the handmade production and for decision makers and authorities in the East Azerbaijan Province. The results can be used to determine the potential of each area for handmade carpet production and to highlight potential challenges. This research also presents a new approach for sustainability assessments in studies on handcrafts and, in particular, carpets.
Journal Article
A GIS-Based Spatiotemporal Modelling of Urban Traffic Accidents in Tabriz City during the COVID-19 Pandemic
2022
The main aim of the present study was to investigate the spatiotemporal trends of urban traffic accident hotspots during the COVID-19 pandemic. The severity index was used to determine high-risk areas, and the kernel density estimation method was used to identify risk of traffic accident hotspots. Accident data for the time period of April 2018 to November 2020 were obtained from the traffic police of Tabriz (Iran) and analyzed using GIS spatial and network analysis procedures. To evaluate the impacts of COVID-19, we used the seasonal variation in car accidents to analyze the change in the total number or urban traffic accidents. Eventually, the sustainability of urban transport was analyzed based on the demographic and land use data to identify the areas with a high number of accidents and its respective impacts for the local residences. Based on the results, the lockdown measures in response to the pandemic have led to significant reductions in road traffic accidents. From the perspective of urban planning, the spatiotemporal urban traffic accident analysis indicated that areas with high numbers of elderly people and children were most affected by car accidents. As we identified the hotspots of urban traffic accidents and evaluated their spatiotemporal correlation with land use and demography characteristics, we conclude that the results of this study can be used by urban managers and support decision making to improve the situation, so that fewer accidents will happen in the future.
Journal Article