Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Onnela, Antti"
Sort by:
Manufacturing technologies and joining methods of metallic thin-walled pipes for use in high pressure cooling systems
Small diameter thin-walled pipes, typically with a diameter less than 20 mm and a ratio of outer diameter to wall thickness is 20 or above, have increasingly become a key value adding factor for a number of industries including medical applications, electronics and chemical industries. In high-energy physics experiments, thin-walled pipes are needed in tracking detector cooling systems where the mass of all components needs to be minimised for physics measurement reasons. The pipework must reliably withstand the cooling fluid operation pressures (of up to 100 bar), but must also be able to be reliably and easily joined within the cooling system. Suitable standard and/or commercial solutions combining the needed low mass and reliable high-pressure operation are poorly available. The following review of literature compares the various techniques that exist for the manufacture and joining of thin-walled pipes, both well-established techniques and novel methods which have potential to increase the use of thin-walled pipes within industrial cooling systems. Gaps in knowledge have been identified, along with further research directions. Operational challenges and key considerations which have to be identified when designing a system which uses thin-walled pipes are also discussed.
The impact of ammonia on particle formation in the Asian Tropopause Aerosol Layer
During summer, ammonia emissions in Southeast Asia influence air pollution and cloud formation. Convective transport by the South Asian monsoon carries these pollutant air masses into the upper troposphere and lower stratosphere (UTLS), where they accumulate under anticyclonic flow conditions. This air mass accumulation is thought to contribute to particle formation and the development of the Asian Tropopause Aerosol Layer (ATAL). Despite the known influence of ammonia and particulate ammonium on air pollution, a comprehensive understanding of the ATAL is lacking. In this modelling study, the influence of ammonia on particle formation is assessed with emphasis on the ATAL. We use the EMAC chemistry-climate model, incorporating new particle formation parameterisations derived from experiments at the CERN CLOUD chamber. Our diurnal cycle analysis confirms that new particle formation mainly occurs during daylight, with a 10-fold enhancement in rate. This increase is prominent in the South Asian monsoon UTLS, where deep convection introduces high ammonia levels from the boundary layer, compared to a baseline scenario without ammonia. Our model simulations reveal that this ammonia-driven particle formation and growth contributes to an increase of up to 80% in cloud condensation nuclei (CCN) concentrations at cloud-forming heights in the South Asian monsoon region. We find that ammonia profoundly influences the aerosol mass and composition in the ATAL through particle growth, as indicated by an order of magnitude increase in nitrate levels linked to ammonia emissions. However, the effect of ammonia-driven new particle formation on aerosol mass in the ATAL is relatively small. Ammonia emissions enhance the regional aerosol optical depth (AOD) for shortwave solar radiation by up to 70%. We conclude that ammonia has a pronounced effect on the ATAL development, composition, the regional AOD, and CCN concentrations.
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog 1 , 2 , but how it occurs in cities is often puzzling 3 . If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms 4 , 5 . Measurements in the CLOUD chamber at CERN show that the rapid condensation of ammonia and nitric acid vapours could be important for the formation and survival of new particles in wintertime urban conditions, contributing to urban smog.
The role of low-volatility organic compounds in initial particle growth in the atmosphere
The growth of nucleated organic particles has been investigated in controlled laboratory experiments under atmospheric conditions; initial growth is driven by organic vapours of extremely low volatility, and accelerated by more abundant vapours of slightly higher volatility, leading to markedly different modelled concentrations of atmospheric cloud condensation nuclei when this growth mechanism is taken into account. Aerosol particle formation in clean air The effect of atmospheric aerosols on clouds and the radiative forcing of the climate system remains poorly understood. It is thought that nucleation of aerosol particles from atmospheric vapours rarely proceeds in the absence of sulfuric acid. Now two papers in this week’s Nature point to a previously unappreciated role for highly oxygenated molecules (HOMs) in promoting new particle formation and growth, essentially a mechanism that produces aerosols in the absence of pollution. Jasper Kirkby et al . show that aerosol particles can form as a result of ion-induced nucleation of HOMs in the absence of sulfuric acid under conditions relevant to the atmosphere in the CLOUD chamber at CERN. Jasmin Tröstl et al . examined the role of organic vapours in the initial growth of nucleated organic particles in the absence of sulfuric acid in the CERN CLOUD chamber under atmospheric conditions. They find that the organic vapours driving initial growth have extremely low volatilities. With increasing particle size, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility. About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday 1 . Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres 2 , 3 . In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles 4 , thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth 5 , 6 , leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer 7 , 8 , 9 , 10 . Although recent studies 11 , 12 , 13 predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon 2 , and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory) 2 , 14 , has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown 15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10 −4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10 −4.5 to 10 −0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
Amines at typical atmospheric concentrations of a only few molecules per trillion air molecules combine with sulphuric acid to form highly stable aerosol particles at rates similar to those observed in the lower atmosphere. Atmospheric chemistry of anthropogenic amines Amines emitted into the atmosphere from anthropogenic sources are thought to enhance nucleation from trace atmospheric vapours, stimulate particle formation and influence the development and properties of clouds. Direct evidence for this under atmospheric conditions has been lacking; however, this study, using the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN, demonstrates that amines at atmospherically relevant concentrations can sufficiently increase nucleation rates to be able to account for the particle formation rates observed in the atmospheric environment. Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei 1 . Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes 2 . Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases 2 . However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere 3 . It is thought that amines may enhance nucleation 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Global atmospheric particle formation from CERN CLOUD measurements
Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.
Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from −25 °C to 25 °C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.
Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles
Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.
New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model
A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are reanalyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at a larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range of sizes (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement for the high base-to-acid ratios (∼ 100) relevant for this study. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically controlled) NPF for the conditions during the CLOUD7 experiment (278 K, 38 % relative humidity, sulfuric acid concentration between 1 × 106 and 3 × 107 cm−3, and dimethylamine mixing ratio of ∼ 40 pptv, i.e., 1 × 109 cm−3).
Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN) 1 – 4 . However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region 5 , 6 . Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO 3 –H 2 SO 4 –NH 3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere. By performing experiments under upper tropospheric conditions, nitric acid, sulfuric acid and ammonia can form particles synergistically, at rates orders of magnitude faster than any two of the three components.