Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Ono, Wanida"
Sort by:
A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration
Bone marrow stromal cells (BMSCs) are versatile mesenchymal cell populations underpinning the major functions of the skeleton, a majority of which adjoin sinusoidal blood vessels and express C-X-C motif chemokine ligand 12 (CXCL12). However, how these cells are activated during regeneration and facilitate osteogenesis remains largely unknown. Cell-lineage analysis using Cxcl12-creER mice reveals that quiescent Cxcl12-creER + perisinusoidal BMSCs differentiate into cortical bone osteoblasts solely during regeneration. A combined single cell RNA-seq analysis demonstrate that these cells convert their identity into a skeletal stem cell-like state in response to injury, associated with upregulation of osteoblast-signature genes and activation of canonical Wnt signaling components along the single-cell trajectory. β-catenin deficiency in these cells indeed causes insufficiency in cortical bone regeneration. Therefore, quiescent Cxcl12-creER + BMSCs transform into osteoblast precursor cells in a manner mediated by canonical Wnt signaling, highlighting a unique mechanism by which dormant stromal cells are enlisted for skeletal regeneration. Bone marrow stromal cells (BMSCs) lining sinusoidal blood vessels are mesenchymal cells whose function is critical for the skeleton. Here the authors show that quiescent CXCL12-expressing BMSCs can convert into a skeletal stem cell-like state, and differentiate into cortical bone osteoblasts only in response to injury.
Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond
Growth plate chondrocytes play central roles in the proper development and growth of endochondral bones. Particularly, a population of chondrocytes in the resting zone expressing parathyroid hormone-related protein (PTHrP) is now recognized as skeletal stem cells, defined by their ability to undergo self-renewal and clonally give rise to columnar chondrocytes in the postnatal growth plate. These chondrocytes also possess the ability to differentiate into a multitude of cell types including osteoblasts and bone marrow stromal cells during skeletal development. Using single-cell transcriptomic approaches and in vivo lineage tracing technology, it is now possible to further elucidate their molecular properties and cellular fate changes. By discovering the fundamental molecular characteristics of these cells, it may be possible to harness their functional characteristics for skeletal growth and regeneration. Here, we discuss our current understanding of the molecular signatures defining growth plate chondrocytes.
A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones
The hallmark of endochondral bone development is the presence of cartilaginous templates, in which osteoblasts and stromal cells are generated to form mineralized matrix and support bone marrow haematopoiesis. However, the ultimate source of these mesenchymal cells and the relationship between bone progenitors in fetal life and those in later life are unknown. Fate-mapping studies revealed that cells expressing cre -recombinases driven by the collagen II ( Col2 ) promoter/enhancer and their descendants contributed to, in addition to chondrocytes, early perichondrial precursors before Runx2 expression and, subsequently, to a majority of osteoblasts, Cxcl12 (chemokine (C–X–C motif) ligand 12)-abundant stromal cells and bone marrow stromal/mesenchymal progenitor cells in postnatal life. Lineage-tracing experiments using a tamoxifen-inducible creER system further revealed that early postnatal cells marked by Col2–creER , as well as Sox9–creER and aggrecan (Acan)–creER , progressively contributed to multiple mesenchymal lineages and continued to provide descendants for over a year. These cells are distinct from adult mesenchymal progenitors and thus provide opportunities for regulating the explosive growth that occurs uniquely in growing mammals. Kronenberg and colleagues report that mesenchymal progenitor cells in endochondral bones express chondrocyte markers. By lineage tracing, they see that this population contributes to chondrocytes, osteoblasts and stromal cells in postnatal bones.
Resting zone of the growth plate houses a unique class of skeletal stem cells
Skeletal stem cells regulate bone growth and homeostasis by generating diverse cell types, including chondrocytes, osteoblasts and marrow stromal cells. The emerging concept postulates that there exists a distinct type of skeletal stem cell that is closely associated with the growth plate 1 – 4 , which is a type of cartilaginous tissue that has critical roles in bone elongation 5 . The resting zone maintains the growth plate by expressing parathyroid hormone-related protein (PTHrP), which interacts with Indian hedgehog (Ihh) that is released from the hypertrophic zone 6 – 10 , and provides a source of other chondrocytes 11 . However, the identity of skeletal stem cells and how they are maintained in the growth plate are unknown. Here we show, in a mouse model, that skeletal stem cells are formed among PTHrP-positive chondrocytes within the resting zone of the postnatal growth plate. PTHrP-positive chondrocytes expressed a panel of markers for skeletal stem and progenitor cells, and uniquely possessed the properties of skeletal stem cells in cultured conditions. Cell-lineage analysis revealed that PTHrP-positive chondrocytes in the resting zone continued to form columnar chondrocytes in the long term; these chondrocytes underwent hypertrophy, and became osteoblasts and marrow stromal cells beneath the growth plate. Transit-amplifying chondrocytes in the proliferating zone—which was concertedly maintained by a forward signal from undifferentiated cells (PTHrP) and a reverse signal from hypertrophic cells (Ihh)—provided instructive cues to maintain the cell fates of PTHrP-positive chondrocytes in the resting zone. Our findings unravel a type of somatic stem cell that is initially unipotent and acquires multipotency at the post-mitotic stage, underscoring the malleable nature of the skeletal cell lineage. This system provides a model in which functionally dedicated stem cells and their niches are specified postnatally, and maintained throughout tissue growth by a tight feedback regulation system. In a mouse model, PTHrP-positive chondrocytes in the resting zone of the growth plate constitute a unique stem-cell population, which is initially unipotent and makes columnar chondrocytes that later exhibit multipotency.
Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation
Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide ( PTHrP ) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C ( Nfic ). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP–PPR system during root morphogenesis and tooth eruption. How the parathyroid hormone-related protein receptor (PPR) and its ligand act in root formation and tooth eruption is unclear. Here, the authors identify osterix-expressing dental mesenchymal cells as progenitors for root formation and that PPR signalling mediates their differentiation and tooth eruption.
Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment
Chondrocytes in the resting zone of the postnatal growth plate are characterized by slow cell cycle progression, and encompass a population of parathyroid hormone-related protein (PTHrP)-expressing skeletal stem cells that contribute to the formation of columnar chondrocytes. However, how these chondrocytes are maintained in the resting zone remains undefined. We undertook a genetic pulse-chase approach to isolate slow cycling, label-retaining chondrocytes (LRCs) using a chondrocyte-specific doxycycline-controllable Tet-Off system regulating expression of histone 2B-linked GFP. Comparative RNA-seq analysis identified significant enrichment of inhibitors and activators for Wnt signaling in LRCs and non-LRCs, respectively. Activation of Wnt/β-catenin signaling in PTHrP + resting chondrocytes using Pthlh-creER and Apc -floxed allele impaired their ability to form columnar chondrocytes. Therefore, slow-cycling chondrocytes are maintained in a Wnt-inhibitory environment within the resting zone, unraveling a novel mechanism regulating maintenance and differentiation of PTHrP + skeletal stem cells of the postnatal growth plate.
Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption
Formation of functional skeletal tissues requires highly organized steps of mesenchymal progenitor cell differentiation. The dental follicle (DF) surrounding the developing tooth harbors mesenchymal progenitor cells for various differentiated cells constituting the tooth root–bone interface and coordinates tooth eruption in a manner dependent on signaling by parathyroid hormone-related peptide (PTHrP) and the PTH/PTHrP receptor (PPR). However, the identity of mesenchymal progenitor cells in the DF and how they are regulated by PTHrP-PPR signaling remain unknown. Here, we show that the PTHrP-PPR autocrine signal maintains physiological cell fates of DF mesenchymal progenitor cells to establish the functional periodontal attachment apparatus and orchestrates tooth eruption. A single-cell RNA-seq analysis revealed cellular heterogeneity of PTHrP⁺ cells, wherein PTHrP⁺ DF subpopulations abundantly express PPR. Cell lineage analysis using tamoxifen-inducible PTHrP-creER mice revealed that PTHrP⁺ DF cells differentiate into cementoblasts on the acellular cementum, periodontal ligament cells, and alveolar cryptal bone osteoblasts during tooth root formation. PPR deficiency induced a cell fate shift of PTHrP⁺ DF mesenchymal progenitor cells to nonphysiological cementoblast-like cells precociously forming the cellular cementum on the root surface associated with up-regulation of Mef2c and matrix proteins, resulting in loss of the proper periodontal attachment apparatus and primary failure of tooth eruption, closely resembling human genetic conditions caused by PPR mutations. These findings reveal a unique mechanism whereby proper cell fates of mesenchymal progenitor cells are tightly maintained by an autocrine system mediated by PTHrP-PPR signaling to achieve functional formation of skeletal tissues.
Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis
The bone marrow contains various populations of skeletal stem cells (SSCs) in the stromal compartment, which are important regulators of bone formation. It is well-described that leptin receptor (LepR) + perivascular stromal cells provide a major source of bone-forming osteoblasts in adult and aged bone marrow. However, the identity of SSCs in young bone marrow and how they coordinate active bone formation remains unclear. Here we show that bone marrow endosteal SSCs are defined by fibroblast growth factor receptor 3 ( Fgfr3 ) and osteoblast-chondrocyte transitional (OCT) identities with some characteristics of bone osteoblasts and chondrocytes. These Fgfr3-creER -marked endosteal stromal cells contribute to a stem cell fraction in young stages, which is later replaced by Lepr-cre -marked stromal cells in adult stages. Further, Fgfr3 + endosteal stromal cells give rise to aggressive osteosarcoma-like lesions upon loss of p53 tumor suppressor through unregulated self-renewal and aberrant osteogenic fates. Therefore, Fgfr3 + endosteal SSCs are abundant in young bone marrow and provide a robust source of osteoblasts, contributing to both normal and aberrant osteogenesis. This study identified a new class of skeletal stem cells in the endosteal space of bone marrow, which are abundant in young bone marrow, express Fgfr3 with osteoblast-chondrocyte transitional identities and can turn into bone tumor-making cells.
Bone marrow endosteum in homeostasis and metastasis
The endosteum is a thin layer of connective tissue lining the inner surfaces of bones adjoining the medullary cavity. The endosteum houses a variety of cells crucial for bone growth, repair and remodelling, including bone-forming osteoblasts, bone-resorbing osteoclasts and their precursor cells. Historically, the endosteum has been extensively studied as a key site for haematopoiesis by which blood cells are incessantly produced. However, recent studies have defined the endosteum as a niche for skeletal stem cells, underscoring the importance of the harmony between the inner endosteum and the outer periosteum in maintaining bone homeostasis. The endosteum also plays a significant role in pathological conditions, as it is recognized as a preferential site for bone metastasis of several common carcinomas, including breast and prostate cancers. The uniquely complex microenvironment of the endosteum favours the survival of cancer cells, contributing to dormancy, resistance to therapies and eventually, reemergence and progression. In this review, we discuss the multifaceted functions of the bone marrow endosteum, focusing on its dual roles in normal bone haematopoiesis and tumour metastasis.
The fate of early perichondrial cells in developing bones
In endochondral bone development, bone-forming osteoblasts and bone marrow stromal cells have dual origins in the fetal cartilage and its surrounding perichondrium. However, how early perichondrial cells distinctively contribute to developing bones remain unidentified. Here we show using in vivo cell-lineage analyses that Dlx5 + fetal perichondrial cells marked by Dlx5-creER do not generate cartilage but sustainably contribute to cortical bone and marrow stromal compartments in a manner complementary to fetal chondrocyte derivatives under the regulation of Hedgehog signaling. Postnatally, Dlx5 + fetal perichondrial cell derivatives preferentially populate the diaphyseal marrow stroma with a dormant adipocyte-biased state and are refractory to parathyroid hormone-induced bone anabolism. Therefore, early perichondrial cells of the fetal cartilage are destined to become an adipogenic subset of stromal cells in postnatal diaphyseal bone marrow, supporting the theory that the adult bone marrow stromal compartments are developmentally prescribed within the two distinct cells-of-origins of the fetal bone anlage. In endochondral bone development, bone-forming osteoblasts and bone marrow stromal cells have dual origins in the fetal cartilage and its surrounding perichondrium. Here they show that perichondrial cells are destined to become adipocyte-biased stromal cells, indicating that marrow stromal compartments are defined by their cells of origin.