Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
39 result(s) for "Opitom, C"
Sort by:
Monitoring of comets activity and composition with the TRAPPIST-North telescope
TRAPPIST-North (TRAnsiting Planets and PlanetesImals Small Telescope) is a 60-cm robotic telescope that was installed in May 2016 at the Oukaimeden Observatory [1]. The project is led by the University of Liège (Belgium) and the Caddi Ayad University of Marrakech (Morocco). This telescope is a twin of the TRAPPIST-South telescope, which was installed at the ESO La Silla Observatory in 2010 [2]. The TRAPPIST telescopes are dedicated to the detection and characterization of planets orbiting stars other than our Sun (exoplanets) and the study of comets and other small bodies in our solar system. For the comets research, these telescopes have very sensitive CCD cameras with complete sets of narrow band filters to measure the production rates of several gases (OH, NH, CN, C3 and C2) and the dust [3]. With TRAPPIST-North we can also observe comets that would not be visible in the southern hemisphere. Therfore, with these two telescopes, we can now observe continuously the comets around their orbit. We project to study individually the evolution of the activity, chemical composition, dust properties, and coma morphology of several comets per year and of different origins (New comets and Jupiter Family comets) over a wide range of heliocentric distances, and on both sides of perihelion. We measure the production rates of each daughter molecules using a Haser model [4], in addition to the Afρ parameter to estimate the dust production in the coma. In this work, we present the first measurements of the production rates of comet C/2013 X1 (PANSTARRS) observed with TN in June 2016, and the measurements of comet C/2013 V5 (Oukaimeden) observed in 2014 with TRAPPIST-South.
A ring system detected around the Centaur (10199) Chariklo
Observations of a stellar occultation by (10199) Chariklo, a minor body that orbits the Sun between Jupiter and Neptune, reveal that it has a ring system, a property previously observed only for the four giant planets of the Solar System. Tiny Chariklo has its own ring system Observations of a stellar occultation by (10199) Chariklo, a Centaur-class outer-system asteroid orbiting between Saturn and Uranus, reveal that it has a ring system, a feature previously observed only for the four giant planets. Chariklo, with a diameter of about 250 km, has two narrow and dense rings separated by a small gap, probably due to the presence of a (yet-to-be-found) kilometre-sized satellite. The discovery of these rings raises questions about the formation and dynamical evolution of planetary rings. For one thing, it seems likely that planetary rings are much more common than previously thought. Hitherto, rings have been found exclusively around the four giant planets in the Solar System 1 . Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur—that is, one of a class of small objects orbiting primarily between Jupiter and Neptune—with an equivalent radius of 124   9 kilometres (ref. 2 ). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming 3 of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period 4 , 5 . This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.
The Main Belt Comets and ice in the Solar System
We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies.
The 67P/Churyumov-Gerasimenko observation campaign in support of the Rosetta mission
We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosetta's arrival until nearly the end of the mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively 'well-behaved' comet, typical of Jupiter family comets and with activity patterns that repeat from orbit to orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends-in this paper, we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies. This article is part of the themed issue ‘Cometary science after Rosetta’.
The 67P/Churyumov–Gerasimenko observation campaign in support of the Rosetta mission
We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosetta's arrival until nearly the end of the mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively 'well-behaved' comet, typical of Jupiter family comets and with activity patterns that repeat from orbit to orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends--in this paper, we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies. This article is part of the themed issue 'Cometary science after Rosetta'.
Optical spectropolarimetry of binary asteroid Didymos-Dimorphos before and after the DART impact
We have monitored the Didymos-Dimorphos binary asteroid in spectropolarimetric mode in the optical range before and after the DART impact. The ultimate goal was to obtain constraints on the characteristics of the ejected dust for modelling purposes. Before impact, Didymos exhibited a linear polarization rapidly increasing with phase angle, reaching a level of about 5% in the blue and about 4.5 in the red. The shape of the polarization spectrum was anti-correlated with that of its reflectance spectrum, which appeared typical of an S-class asteroid. After impact, the level of polarization dropped by about 1 percentage point (pp) in the blue band and about 0.5 pp in the red band, then continued to linearly increase with phase angle, with a slope similar to that measured prior to impact. The polarization spectra, once normalised by their values at an arbitrary wavelength, show very little or no change over the course of all observations, before and after impact. The lack of any remarkable change in the shape of the polarization spectrum after impact suggests that the way in which polarization varies with wavelength depends on the composition of the scattering material, rather than on its structure, be this a surface or a debris cloud.
Chemical composition of comets C/2021 A1 (Leonard) and C/2022 E3 (ZTF) from radio spectroscopy and the abundance of HCOOH and HNCO in comets
We present the results of a molecular survey of long period comets C/2021 A1 (Leonard) and C/2022 E3 (ZTF). Comet C/2021 A1 was observed with the IRAM 30-m radio telescope in November-December 2021 before perihelion when it was closest to the Earth. We observed C/2022 E3 in January-February 2023 with the Odin 1-m space telescope and IRAM 30-m, shortly after its perihelion, and when it was closest to the Earth. Snapshots were obtained during 12-16 November 2021 period for comet C/2021 A1. Spectral surveys were undertaken over the 8-13 December 2021 period for comet C/2021 A1 (8, 16, and 61 GHz bandwidth in the 3 mm, 2 mm, and 1 mm window) and over the 3-7 February 2023 period for comet C/2022 E3 (25 and 61 GHz at 2 and 1mm). We report detections of 14 molecular species (HCN, HNC, CH3CN, HNCO, NH2CHO, CH3OH, H2CO, HCOOH, CH3CHO, H2S, CS, OCS, C2H5OH and aGg-(CH2OH)2 ) in both comets plus HC3N and CH2OHCHO marginally detected in C/2021 A1 and CO and H2O (with Odin detected in C/2022 E3. The spatial distribution of several species is investigated. Significant upper limits on the abundances of other molecules and isotopic ratios are also presented. The activity of comet C/2021 A1 did not vary significantly between 13 November and 13 December 2021. Short-term variability in the outgassing of comet C/2022 E3 on the order of +-20% is present and possibly linked to its 8h rotation period. Both comets exhibit rather low abundances relative to water for volatiles species such as CO (< 2%) and H2S (0.15%). Methanol is also rather depleted in comet C/2021 A1 (0.9%). Following their revised photo-destruction rates, HNCO and HCOOH abundances in comets have been reevaluated. Both molecules are relatively enriched in these two comets (0.2% relative to water). We cannot exclude that these species could be produced by the dissociation of ammonium salts.
MUSE observations of comet 67P/Churyumov-Gerasimenko: A reference for future comet observations with MUSE
Observations of comet 67P/Churyumov-Gerasimenko were performed with MUSE at large heliocentric distances post-perihelion, between March 3 and 7, 2016. Those observations were part of a simultaneous ground-based campaign aimed at providing large-scale information about comet 67P that complement the ESA/Rosetta mission. We obtained a total of 38 datacubes over 5 nights. We take advantage of the integral field unit (IFU) nature of the instrument to study simultaneously the spectrum of 67P's dust and its spatial distribution in the coma. We also look for evidence of gas emission in the coma. We produce a high quality spectrum of the dust coma over the optical range that could be used as a reference for future comet observations with the instrument. The slope of the dust reflectivity is of 10%\\(/100\\) nm over the 480-900 nm interval, with a shallower slope towards redder wavelengths. We use the \\(\\mathrm{Af\\rho}\\) to quantify the dust production and measure values of 65\\(\\pm\\)4 cm, 75\\(\\pm\\)4 cm, and 82\\(\\pm\\)4 cm in the V, R, and I bands respectively. We detect several jets in the coma, as well as the dust trail. Finally, using a novel method combining spectral and spatial information, we detect the forbidden oxygen emission line at 630 nm. Using this line we derive a water production rate of \\(1.5\\pm0.6 \\times 10^{26} \\mathrm{molec./s}\\), assuming all oxygen atoms come from the photo-dissociation of water.
Activity and composition of the hyperactive comet 46P/Wirtanen during its close approach in 2018
Hyperactive comets are a small group of comets whose activity are higher than expected. They seem to emit more water than they should based on the size of their nucleus and comet 46P/Wirtanen is one of them. Investigating its activity and composition evolution could provide clues about its origins and formation region in the Solar nebulae. Given the exceptional close approach in 2018 of comet 46P to the Earth, we aim to study the evolution of its activity and composition as a function of heliocentric distances before and after perihelion. We used both TRAPPIST telescopes to monitor the comet for almost a year with broad-band and narrow-band filters. We derived the production rates of five gaseous species, e.g. OH, NH, CN, C\\(_3\\) and C\\(_2\\), using a Haser model as well as the A(\\(\\theta\\))f\\(\\rho\\), dust proxy parameter. The comet was also observed with two optical high resolution spectrographs UVES and ESPRESSO mounted on the 8-m ESO VLT to measure the isotopic ratios of C and N, the oxygen forbidden lines ratios and the NH\\(_2\\) ortho-to-para ratios. We followed during almost a year the rise and decline of the production rates of different species as well as the dust activity of 46P on both pre- and post-perihelion. Relative abundances with respect to CN and OH along the orbit of the comet show constant and symmetric abundance ratios and a typical coma composition. We determined the rotation period of the nucleus using high cadence observations and long series of CN images on several nights, and we obtained a value of (9.18\\(\\pm\\)0.05) hr at perihelion. Using high resolution spectra of 46P coma, we derived C and N isotopic ratios of 100\\(\\pm\\)20 and 150\\(\\pm\\)30 and a green-to-red forbidden oxygen [OI] lines ratio of 0.23\\(\\pm\\)0.02. We measured a NH\\(_2\\) ortho-to-para ratio of 3.31\\(\\pm\\)0.03 and derived an ammonia ratio of 1.19\\(\\pm\\)0.03 corresponding to a spin temperature of 27\\(\\pm\\)1 K.
Atomic carbon, nitrogen, and oxygen forbidden emission lines in the water-poor comet C/2016 R2 (Pan-STARRS)
The N\\(_2\\) and CO-rich and water-depleted comet C/2016 R2 (Pan-STARRS) (hereafter `C/2016 R2') is a unique comet for detailed spectroscopic analysis. We aim to explore the associated photochemistry of parent species, which produces different metastable states and forbidden emissions, in this cometary coma of peculiar composition. We re-analyzed the high-resolution spectra of comet C/2016 R2, which were obtained in February 2018, using the UVES spectrograph of the European Southern Observatory (ESO) Very Large Telescope (VLT). Various forbidden atomic emission lines of [CI], [NI], and [OI] were observed in the optical spectrum of this comet when it was at 2.8 au from the Sun. The observed forbidden emission intensity ratios are studied in the framework of a couple-chemistry emission model. The model calculations show that CO\\(_2\\) is the major source of both atomic oxygen green and red-doublet emissions in the coma of C/2016 R2 (while for most comets it is generally H\\(_2\\)O), whereas, CO and N\\(_2\\) govern the atomic carbon and nitrogen emissions, respectively. Our modelled oxygen green to red-doublet and carbon to nitrogen emission ratios are higher by a factor {of 3}, when compared to the observations. These discrepancies can be due to uncertainties associated with photon cross sections or unknown production/loss sources. Our modelled oxygen green to red-doublet emission ratio is close to the observations, when we consider an O\\(_2\\) abundance with a production rate of 30\\% relative to the CO production rate. The collisional quenching is not a significant loss process for N(\\(^2\\)D) though its radiative lifetime is significant (\\(\\sim\\)10 hrs). Hence, the observed [NI] doublet-emission ratio ([NI] 5198/5200) of 1.22, which is smaller than the terrestrial measurement by a factor {1.4}, is mainly due to the characteristic radiative decay of N(\\(^2\\)D).