Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Opitz, Friederike V."
Sort by:
Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor microenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or even halt tumor progression.
Bile-Based Cell-Free DNA Analysis Is a Reliable Diagnostic Tool in Pancreatobiliary Cancer
Currently available serum biomarkers for pancreatobiliary cancers lack sensitivity and specificity and ultimate diagnosis still requires invasive procedures for histological confirmation. The detection of tumor-specific genetic aberrations with utilization of cell free DNA (cfDNA) is a less invasive approach than traditional tissue biopsies; however, it has not been implemented into clinical routine. In this study, we investigated bile as a liquid biopsy source in pancreatobiliary cancers and compared its potential as cell-free DNA source to plasma. Blood (n = 37) and bile (n = 21) samples were collected from patients affected by pancreatic ductal adenocarcinoma (PDAC) and extrahepatic cholangiocarcinoma (CCA) or with non-malignant biliary obstructions (blood n = 16; bile n = 21). Panel-based next generation sequencing (NGS) and digital droplet PCR (ddPCR) were applied for tumor mutation profiling. NGS results from matched tumor tissues (n = 29) served as comparison. Sequencing of cfDNA from bile resulted in detection of 96.2% of the pathogenic tumor mutations found in matched tissue samples. On the other hand, only 31.6% of pathogenic tumor mutations found in tissue could be detected in plasma. In a direct comparison, only half of the mutations detected in bile cfDNA were concordantly detected in plasma from the same patients. Panel NGS and ddPCR displayed comparable sensitivity. In conclusion, bile is a suitable source of cfDNA for the diagnosis of pancreatobiliary cancer and performs more reliably than plasma. Although primary diagnosis still requires histologic confirmation, bile-derived cfDNA could offer an alternative if tissue sampling is not feasible and might allow less invasive disease monitoring.
Molecular heterogeneity and commonalities in pancreatic cancer precursors with gastric and intestinal phenotype
ObjectiveDue to the limited number of modifiable risk factors, secondary prevention strategies based on early diagnosis represent the preferred route to improve the prognosis of pancreatic ductal adenocarcinoma (PDAC). Here, we provide a comparative morphogenetic analysis of PDAC precursors aiming at dissecting the process of carcinogenesis and tackling the heterogeneity of preinvasive lesions.DesignTargeted and whole-genome low-coverage sequencing, genome-wide methylation and transcriptome analyses were applied on a final collective of 122 morphologically well-characterised low-grade and high-grade PDAC precursors, including intestinal and gastric intraductal papillary mucinous neoplasms (IPMN) and pancreatic intraepithelial neoplasias (PanIN).ResultsEpigenetic regulation of mucin genes determines the phenotype of PDAC precursors. PanIN and gastric IPMN display a ductal molecular profile and numerous similarly regulated pathways, including the Notch pathway, but can be distinguished by recurrent deletions and differential methylation and, in part, by the expression of mucin-like 3. Intestinal IPMN are clearly distinct lesions at the molecular level with a more instable genotype and are possibly related to a different ductal cell compartment.ConclusionsPDAC precursors with gastric and intestinal phenotype are heterogeneous in terms of morphology, genetic and epigenetic profile. This heterogeneity is related to a different cell identity and, possibly, to a different aetiology.
Infectious stimuli promote malignant B-cell acute lymphoblastic leukemia in the absence of AID
The prerequisite to prevent childhood B-cell acute lymphoblastic leukemia (B-ALL) is to decipher its etiology. The current model suggests that infection triggers B-ALL development through induction of activation-induced cytidine deaminase (AID; also known as AICDA) in precursor B-cells. This evidence has been largely acquired through the use of ex vivo functional studies. However, whether this mechanism governs native non-transplant B-ALL development is unknown. Here we show that, surprisingly, AID genetic deletion does not affect B-ALL development in Pax5-haploinsufficient mice prone to B-ALL upon natural infection exposure. We next test the effect of premature AID expression from earliest pro-B-cell stages in B-cell transformation. The generation of AID off-target mutagenic activity in precursor B-cells does not promote B-ALL. Likewise, known drivers of human B-ALL are not preferentially targeted by AID. Overall these results suggest that infections promote B-ALL through AID-independent mechanisms, providing evidence for a new model of childhood B-ALL development. Infection or chronic inflammation is a risk factor for childhood B-cell precursor acute lymphoblastic leukemia. Here, the authors show that the DNA editing enzyme AID is expressed in infected B cells but using genetic mouse models show that it does not contribute to leukemia pathogenesis.
Recognition of microbial viability via TLR8 drives T FH cell differentiation and vaccine responses
Live attenuated vaccines are generally highly efficacious and often superior to inactivated vaccines, yet the underlying mechanisms of this remain largely unclear. Here we identify recognition of microbial viability as a potent stimulus for follicular helper T cell (T cell) differentiation and vaccine responses. Antigen-presenting cells (APCs) distinguished viable bacteria from dead bacteria through Toll-like receptor 8 (TLR8)-dependent detection of bacterial RNA. In contrast to dead bacteria and other TLR ligands, live bacteria, bacterial RNA and synthetic TLR8 agonists induced a specific cytokine profile in human and porcine APCs, thereby promoting T cell differentiation. In domestic pigs, immunization with a live bacterial vaccine induced robust T cell and antibody responses, but immunization with its heat-killed counterpart did not. Finally, a hypermorphic TLR8 polymorphism was associated with protective immunity elicited by vaccination with bacillus Calmette-Guérin (BCG) in a human cohort. We have thus identified TLR8 as an important driver of T cell differentiation and a promising target for T cell-skewing vaccine adjuvants.
Recognition of microbial viability via TLR8 drives TFH cell differentiation and vaccine responses
Live attenuated vaccines are generally highly efficacious and often superior to inactivated vaccines, yet the underlying mechanisms of this remain largely unclear. Here we identify recognition of microbial viability as a potent stimulus for follicular helper T cell (T FH cell) differentiation and vaccine responses. Antigen-presenting cells (APCs) distinguished viable bacteria from dead bacteria through Toll-like receptor 8 (TLR8)-dependent detection of bacterial RNA. In contrast to dead bacteria and other TLR ligands, live bacteria, bacterial RNA and synthetic TLR8 agonists induced a specific cytokine profile in human and porcine APCs, thereby promoting T FH cell differentiation. In domestic pigs, immunization with a live bacterial vaccine induced robust T FH cell and antibody responses, but immunization with its heat-killed counterpart did not. Finally, a hypermorphic TLR8 polymorphism was associated with protective immunity elicited by vaccination with bacillus Calmette-Guérin (BCG) in a human cohort. We have thus identified TLR8 as an important driver of T FH cell differentiation and a promising target for T FH cell–skewing vaccine adjuvants. Sander and colleagues show that antigen-presenting cells detect bacterial RNA from live bacteria via TLR8 and promote T FH cell differentiation and vaccine responses through the induction of a specific cytokine profile.