Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
167 result(s) for "Oppeneer, Peter M"
Sort by:
Orbitally dominated Rashba-Edelstein effect in noncentrosymmetric antiferromagnets
Efficient manipulation of magnetic order with electric current pulses is desirable for achieving fast spintronic devices. The Rashba-Edelstein effect, wherein spin polarization is electrically induced in noncentrosymmetric systems, provides a mean to achieve staggered spin-orbit torques. Initially predicted for spin, its orbital counterpart has been disregarded up to now. Here we report a generalized Rashba-Edelstein effect, which generates not only spin polarization but also orbital polarization, which we find to be far from being negligible. We show that the orbital Rashba-Edelstein effect does not require spin-orbit coupling to exist. We present first-principles calculations of the frequency-dependent spin and orbital Rashba-Edelstein tensors for the noncentrosymmetric antiferromagnets CuMnAs and Mn 2 Au. We show that the electrically induced local magnetization can exhibit Rashba-like or Dresselhaus-like symmetries, depending on the magnetic configuration. We compute sizable induced magnetizations at optical frequencies, which suggest that electric-field driven switching could be achieved at much higher frequencies. Efficient manipulation of magnetic order with electric current pulses is desirable for achieving fast spintronic devices and the Rashba-Edelstein effect provides a mean to achieve staggered spin-orbit torques. Here the authors show a generalized Rashba-Edelstein effect generating not only spin polarization but also orbital polarization.
Ultrafast terahertz magnetometry
A material’s magnetic state and its dynamics are of great fundamental research interest and are also at the core of a wide plethora of modern technologies. However, reliable access to magnetization dynamics in materials and devices on the technologically relevant ultrafast timescale, and under realistic device-operation conditions, remains a challenge. Here, we demonstrate a method of ultrafast terahertz (THz) magnetometry, which gives direct access to the (sub-)picosecond magnetization dynamics even in encapsulated materials or devices in a contact-free fashion, in a fully calibrated manner, and under ambient conditions. As a showcase for this powerful method, we measure the ultrafast magnetization dynamics in a laser-excited encapsulated iron film. Our measurements reveal and disentangle distinct contributions originating from (i) incoherent hot-magnon-driven magnetization quenching and (ii) coherent acoustically-driven modulation of the exchange interaction in iron, paving the way to technologies utilizing ultrafast heat-free control of magnetism. High sensitivity and relative ease of experimental arrangement highlight the promise of ultrafast THz magnetometry for both fundamental studies and the technological applications of magnetism. External stimuli can induce significant changes in the magnetisation of a material; however, these changes can occur very rapidly, making measurements difficult. Herein the authors demonstrate a method of ultrafast magnetometry, enabling the detection of the rapid magnetization changes.
Discovery of topological nodal-line fermionic phase in a magnetic material GdSbTe
Topological Dirac semimetals with accidental band touching between conduction and valence bands protected by time reversal and inversion symmetry are at the frontier of modern condensed matter research. A majority of discovered topological semimetals are nonmagnetic and conserve time reversal symmetry. Here we report the experimental discovery of an antiferromagnetic topological nodal-line semimetallic state in GdSbTe using angle-resolved photoemission spectroscopy. Our systematic study reveals the detailed electronic structure of the paramagnetic state of antiferromagnetic GdSbTe. We observe the presence of multiple Fermi surface pockets including a diamond-shape, and small circular pockets around the zone center and high symmetry X points of the Brillouin zone (BZ), respectively. Furthermore, we observe the presence of a Dirac-like state at the X point of the BZ and the effect of magnetism along the nodal-line direction. Interestingly, our experimental data show a robust  Dirac-like state both below and above the magnetic transition temperature ( T N  = 13 K). Having a relatively high transition temperature, GdSbTe provides an archetypical platform to study the interaction between magnetism and topological states of matter.
Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism
We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 μm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at theN4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.
Coherent modulation of the electron temperature and electron–phonon couplings in a 2D material
Ultrashort light pulses can selectively excite charges, spins, and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributions, and their couplings, in the charge-densitywave (CDW) material 1T-TaSe₂. After exciting the material with a femtosecond pulse, fast spatial smearing of the laser-excited electrons launches a coherent lattice breathing mode, which in turn modulates the electron temperature. This finding is in contrast to all previous observations in multiple materials to date, where the electron temperature decreases monotonically via electron–phonon scattering. By tuning the laser fluence, the magnitude of the electron temperature modulation changes from ∼200 K in the case of weak excitation, to ∼1,000 K for strong laser excitation. We also observe a phase change of π in the electron temperature modulation at a critical fluence of 0.7 mJ/cm², which suggests a switching of the dominant coupling mechanism between the coherent phonon and electrons. Our approach opens up routes for coherently manipulating the interactions and properties of two-dimensional and other quantum materials using light.
Materials optics: Lighting up antiferromagnets
Weak coupling of light to the microscopic magnetic order in antiferromagnetic materials makes their optical characterization notoriously difficult. Now, a table-top magneto-optical technique has been developed for detecting the vector direction of antiparallel-aligned magnetic moments in a metallic antiferromagnet
Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice
Realization of long-range magnetic order in surface-supported two-dimensional systems has been challenging, mainly due to the competition between fundamental magnetic interactions as the short-range Kondo effect and spin-stabilizing magnetic exchange interactions. Spin-bearing molecules on conducting substrates represent a rich platform to investigate the interplay of these fundamental magnetic interactions. Here we demonstrate the direct observation of long-range ferrimagnetic order emerging in a two-dimensional supramolecular Kondo lattice. The lattice consists of paramagnetic hexadeca-fluorinated iron phthalocyanine (FeFPc) and manganese phthalocyanine (MnPc) molecules co-assembled into a checkerboard pattern on single-crystalline Au(111) substrates. Remarkably, the remanent magnetic moments are oriented in the out-of-plane direction with significant contribution from orbital moments. First-principles calculations reveal that the FeFPc-MnPc antiferromagnetic nearest-neighbour coupling is mediated by the Ruderman–Kittel–Kasuya–Yosida exchange interaction via the Au substrate electronic states. Our findings suggest the use of molecular frameworks to engineer novel low-dimensional magnetically ordered materials and their application in molecular quantum devices. Long-range magnetic order hardly ever emerges in a two-dimensional system due to the competition of fundamental magnetic interactions. Here, Girovsky et al . directly observe a long-range ferrimagnetic order emerging in a two-dimensional supramolecular Kondo lattice.
Distinguishing attosecond electron–electron scattering and screening in transition metals
Electron–electron interactions are the fastest processes in materials, occurring on femtosecond to attosecond timescales, depending on the electronic band structure of the material and the excitation energy. Such interactions can play a dominant role in light-induced processes such as nano-enhanced plasmonics and catalysis, light harvesting, or phase transitions. However, to date it has not been possible to experimentally distinguish fundamental electron interactions such as scattering and screening. Here, we use sequences of attosecond pulses to directly measure electron–electron interactions in different bands of different materials with both simple and complex Fermi surfaces. By extracting the time delays associated with photoemission we show that the lifetime of photoelectrons from the d band of Cu are longer by ∼100 as compared with those from the same band of Ni. We attribute this to the enhanced electron–electron scattering in the unfilled d band of Ni. Using theoretical modeling, we can extract the contributions of electron–electron scattering and screening in different bands of different materials with both simple and complex Fermi surfaces. Our results also show that screening influences high-energy photoelectrons (≈20 eV) significantly less than low-energy photoelectrons. As a result, high-energy photoelectrons can serve as a direct probe of spin-dependent electron–electron scattering by neglecting screening. This can then be applied to quantifying the contribution of electron interactions and screening to low-energy excitations near the Fermi level. The information derived here provides valuable and unique information for a host of quantum materials.
Magnetic measurements with atomic-plane resolution
Rapid development of magnetic nanotechnologies calls for experimental techniques capable of providing magnetic information with subnanometre spatial resolution. Available probes of magnetism either detect only surface properties, such as spin-polarized scanning tunnelling microscopy, magnetic force microscopy or spin-polarized low-energy electron microscopy, or they are bulk probes with limited spatial resolution or quantitativeness, such as X-ray magnetic circular dichroism or classical electron magnetic circular dichroism (EMCD). Atomic resolution EMCD methods have been proposed, although not yet experimentally realized. Here, we demonstrate an EMCD technique with an atomic size electron probe utilizing a probe-corrected scanning transmission electron microscope in its standard operation mode. The crucial element of the method is a ramp in the phase of the electron beam wavefunction, introduced by a controlled beam displacement. We detect EMCD signals with atomic-plane resolution, thereby bringing near-atomic resolution magnetic circular dichroism spectroscopy to hundreds of laboratories worldwide. It has been predicted that electron beam probes may allow for the imaging of magnetism with atomic-scale resolution. Here, the authors demonstrate a scanning transmission electron microscopy method capable of resolving magnetic contrast from individual atomic planes.
Ultrafast demagnetization of Pt magnetic moment in L10-FePt probed by magnetic circular dichroism at a hard x-ray free electron laser
Unraveling the origin of ultrafast demagnetization in multisublattice ferromagnetic materials requires femtosecond x-ray techniques to trace the magnetic moment dynamics on individual elements, but this could not yet be achieved in the hard x-ray regime. We demonstrate here the first ultrafast demagnetization dynamics in the ferromagnetic heavy 5d-transition metal Pt using circularly-polarized hard x-rays at an x-ray free electron laser (XFEL). The decay time of laser-induced demagnetization of L10-FePt is determined to be τ Pt = 0.61 0.04 ps using time-resolved x-ray magnetic circular dichroism at the Pt L3 edge, whereas magneto-optical Kerr measurements indicate the decay time for the total magnetization as τ total < 0.1 ps . A transient magnetic state with a photo-modulated ratio of the 3d and 5d magnetic moments is demonstrated for pump-probe delays larger than 1 ps. We explain this distinct photo-modulated transient magnetic state by the induced-moment behavior of the Pt atom and the x-ray probing depth. Our findings pave the way for the future use of XFELs to disentangle atomic spin dynamics contributions.