Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
319 result(s) for "Otranto, Domenico"
Sort by:
Zoonotic parasites associated with predation by dogs and cats
One of the most common behaviors of cats that have an indoor/outdoor lifestyle is to bring hunted “gifts” to their owners, represented by small mammals, reptiles and birds. Access to the outdoors by dogs and cats may represent a problematic issue, since they may be at risk of diseases, traffic accidents and ingestion of toxins. Yet, the impact of this population of roaming dogs and cats predating wildlife is another concerning issue that receives less attention. Despite these risks, most owners still prefer to give outdoor access to their pets to allow them to express their “natural instincts,” such as hunting. Therefore, with a growing population of > 470 million dogs and 373 million cats worldwide, predation not only represents a threat to wildlife, but also a door of transmission for parasitic diseases, some of them of zoonotic concern. In this review, the role played by dogs, and especially cats, in the perpetuation of the biological life cycle of zoonotic parasites through the predation of rodents, reptiles and birds is discussed. Feral and domestics dogs and cats have contributed to the population collapse or extinction of > 63 species of reptiles, mammals and birds. Although the ecological impact of predation on wild populations is well documented, the zoonotic risk of transmission of parasitic diseases has not received significant attention. The parasitic diseases associated to predation vary from protozoan agents, such as toxoplasmosis, to cestodes like sparganosis and even nematodes such as toxocariasis. Raising awareness about predation as a risk of zoonotic parasitic infections in dogs and cats will aid to create responsible ownership and proper actions for controlling feral and free-roaming cat and dog populations worldwide. Graphical Abstract
Dogs, cats, parasites, and humans in Brazil: opening the black box
Dogs and cats in Brazil serve as primary hosts for a considerable number of parasites, which may affect their health and wellbeing. These may include endoparasites (e.g., protozoa, cestodes, trematodes, and nematodes) and ectoparasites (i.e., fleas, lice, mites, and ticks). While some dog and cat parasites are highly host-specific (e.g., Aelurostrongylus abstrusus and Felicola subrostratus for cats, and Angiostrongylus vasorum and Trichodectes canis for dogs), others may easily switch to other hosts, including humans. In fact, several dog and cat parasites (e.g., Toxoplasma gondii , Dipylidium caninum , Ancylostoma caninum , Strongyloides stercoralis , and Toxocara canis ) are important not only from a veterinary perspective but also from a medical standpoint. In addition, some of them (e.g., Lynxacarus radovskyi on cats and Rangelia vitalii in dogs) are little known to most veterinary practitioners working in Brazil. This article is a compendium on dog and cat parasites in Brazil and a call for a One Health approach towards a better management of some of these parasites, which may potentially affect humans. Practical aspects related to the diagnosis, treatment, and control of parasitic diseases of dogs and cats in Brazil are discussed.
Zoonotic parasites of dromedary camels: so important, so ignored
With a global population of about 35 million in 47 countries, dromedary camels play a crucial role in the economy of many marginal, desert areas of the world where they survive under harsh conditions. Nonetheless, there is scarce knowledge regarding camelsʼ parasite fauna which can reduce their milk and meat productions. In addition, only scattered information is available about zoonotic parasites transmitted to humans via contamination (e.g. Cryptosporidium spp., Giardia duodenalis , Balantidium coli , Blastocystis spp. and Enterocytozoon bieneusi ), as foodborne infections (e.g. Toxoplasma gondii , Trichinella spp. and Linguatula serrata ) or by arthropod vectors ( Trypanosoma spp.). Herein, we draw attention of the scientific community and health policy-making organizations to the role camels play in the epidemiology of parasitic zoonotic diseases also in the view of an increase in their farming in desert areas worldwide.
Parasitic diseases of equids in Iran (1931–2020): a literature review
Parasitic infections can cause many respiratory, digestive and other diseases and contribute to some performance conditions in equids. However, knowledge on the biodiversity of parasites of equids in Iran is still limited. The present review covers all the information about parasitic diseases of horses, donkeys, mules and wild asses in Iran published as articles in Iranian and international journals, dissertations and congress papers from 1931 to July 2020. Parasites so far described in Iranian equids include species of 9 genera of the Protozoa ( Trypanosoma , Giardia , Eimeria , Klossiella , Cryptosporidium , Toxoplasma , Neospora , Theileria and Babesia ), 50 helminth species from the digestive system (i.e., 2 trematodes, 3 cestodes and 37 nematodes) and from other organs (i.e., Schistosoma turkestanica , Echinococcus granulosus , Dictyocaulus arnfieldi , Parafilaria multipapillosa , Setaria equina and 3 Onchocerca spp.). Furthermore, 16 species of hard ticks, 3 mite species causing mange, 2 lice species, and larvae of 4 Gastrophilus species and Hippobosca equina have been reported from equids in Iran. Archeoparasitological findings in coprolites of equids include Fasciola hepatica , Oxyuris equi , Anoplocephala spp . and intestinal strongyles. Parasitic diseases are important issues in terms of animal welfare, economics and public health; however, parasites and parasitic diseases of equines have not received adequate attention compared with ruminants and camels in Iran. The present review highlights the knowledge gaps related to equines about the presence, species, genotypes and subtypes of Neospora hughesi , Sarcocystis spp., Trichinella spp., Cryptosporidium spp., Giardia duodenalis , Blastocystis and microsporidia. Identification of ticks vectoring pathogenic parasites, bacteria and viruses has received little attention, too. The efficacy of common horse wormers also needs to be evaluated systematically. Graphical Abstract
Dirofilariosis in the Americas: a more virulent Dirofilaria immitis?
Dirofilarioses are widespread diseases caused by filarioid nematodes (superfamily Filarioidea) of the genus Dirofilaria, which are transmitted by a plethora of mosquito species. The principal agent of canine dirofilariosis in the Americas is Dirofilaria immitis, which may also occasionally infest humans, resulting in pulmonary nodules that may be confounded with malignant lung tumours. Because human cases of dirofilariosis by D. immitis are relatively frequent in the Americas and rare in Europe and other eastern countries, where Dirofilaria repens is the main causative agent, the existence of a more virulent strain of D. immitis in the Americas has been speculated. Recently, a case of human ocular infestation by Dirofilaria sp. was diagnosed in Pará State, northern Brazil, where canine heartworm dirofilariosis is endemic. The nematode was shown to be morphologically and phylogenetically related to D. immitis but it was genetically distinct from reference sequences, including those of D. immitis infesting dogs in the same geographical area. This finding raised questions regarding the aetiology of human dirofilariosis in the Americas, since information on the genetic makeup of filarioids infesting dogs and humans is meagre. Further studies would be needed to better characterize filarioids infesting dogs, wild animals, and humans in the Americas and to assess the existence of a more virulent D. immitis strain in this continent. Finally, the competence of different culicid species/strains from Europe and the Americas as vectors of Dirofilaria species should be investigated. Such studies would help us to understand possible variations in transmission patterns and even to predict possible scenarios that may emerge in the future, with the introduction of non-endemic Dirofilaria species/strains in free areas through importation of infested animals, vectors, or both.
The Rhipicephalus sanguineus group: updated list of species, geographical distribution, and vector competence
The Rhipicephalus sanguineus group is an assembly of species morphologically and phylogenetically related to Rhipicephalus sanguineus sensu stricto. The taxonomy and systematics of this species group have remained obscure for a long time, but extensive research conducted during the past two decades has closed many knowledge gaps. These research advancements culminated in the redescription of R. sanguineus sensu stricto, with subsequent revalidation of former synonyms ( Rhipicephalus linnaei , Rhipicephalus rutilus , and Rhipicephalus secundus ) and even the description of new species ( Rhipicephalus afranicus and Rhipicephalus hibericus ). With a much clearer picture of the taxonomy of these species, we present an updated list of species belonging to the R. sanguineus group, along with a review of their geographic distribution and vector role for various pathogens of animals and humans. We also identify knowledge gaps to be bridged in future studies. Graphical abstract
Zoonotic helminths affecting the human eye
Nowaday, zoonoses are an important cause of human parasitic diseases worldwide and a major threat to the socio-economic development, mainly in developing countries. Importantly, zoonotic helminths that affect human eyes (HIE) may cause blindness with severe socio-economic consequences to human communities. These infections include nematodes, cestodes and trematodes, which may be transmitted by vectors (dirofilariasis, onchocerciasis, thelaziasis), food consumption (sparganosis, trichinellosis) and those acquired indirectly from the environment (ascariasis, echinococcosis, fascioliasis). Adult and/or larval stages of HIE may localize into human ocular tissues externally (i.e., lachrymal glands, eyelids, conjunctival sacs) or into the ocular globe (i.e., intravitreous retina, anterior and or posterior chamber) causing symptoms due to the parasitic localization in the eyes or to the immune reaction they elicit in the host. Unfortunately, data on HIE are scant and mostly limited to case reports from different countries. The biology and epidemiology of the most frequently reported HIE are discussed as well as clinical description of the diseases, diagnostic considerations and video clips on their presentation and surgical treatment. Homines amplius oculis, quam auribus credunt Seneca Ep 6,5 Men believe their eyes more than their ears
Leishmania infantum and Dirofilaria immitis infections in Italy, 2009–2019: changing distribution patterns
Background For long time, canine leishmaniosis (CanL) was considered endemic in the southern, central, and insular regions of Italy, whereas heartworm disease (HW) caused by Dirofilaria immitis was considered endemic in the northern region and in the swampy Po Valley. Following the reports of new foci of both diseases, in this study we update the distribution patterns and occurrence of new foci of CanL and HW discussing the main drivers for the changes in the epidemiology of these two important zoonotic canine vector-borne diseases. Methods Based on the statistical analyses of serological assays ( n = 90,633) on L. infantum exposure and D. immitis infection performed by two reference diagnostic centres in Italy over a ten-year period (2009–2019) irrespective of the anamnesis of dogs. The distribution patterns of both parasites are herein presented along with the occurrence of new foci. Results Results highlighted the changing distribution patterns of L. infantum vs D. immitis infection in Italy. CanL is endemic in some areas of northern regions and HW has endemic foci in central and southern regions and islands. Significant differences in L. infantum exposure and HW infection prevalence among the study macroareas were detected. The overall results of the positive tested samples were 28.2% in southern Italy and islands, 29.6% in central Italy and 21.6% in northern Italy for L. infantum and 2.83% in northern Italy, 7.75% in central Italy and 4.97% in southern Italy and islands for HW. HW positivity significantly varied over years ( χ 2 = 108.401, df = 10, P < 0.0001), gradually increasing from 0.77% in 2009 to 8.47% in 2016–2017. Conclusions New potential epidemiological scenarios are discussed according to a range of factors (e.g. environmental modifications, occurrence of competent insect vectors, transportation of infected animals to non-endemic areas, chemoprophylaxis or vector preventative measures), which may affect the current distribution. Overall, the results advocate for epidemiological surveillance programmes, more focussed preventative and control measures even in areas where few or no cases of both diseases have been diagnosed.
Canine and feline vector-borne diseases in Italy: current situation and perspectives
In Italy, dogs and cats are at risk of becoming infected by different vector-borne pathogens, including protozoa, bacteria, and helminths. Ticks, fleas, phlebotomine sand flies, and mosquitoes are recognized vectors of pathogens affecting cats and dogs, some of which (e.g., Anaplasma phagocytophilum, Borrelia burgdorferi, Dipylidium caninum, Leishmania infantum, Dirofilaria immitis, and Dirofilaria repens) are of zoonotic concern. Recent studies have highlighted the potential of fleas as vectors of pathogens of zoonotic relevance (e.g., Rickettsia felis) in this country. While some arthropod vectors (e.g., ticks and fleas) are present in certain Italian regions throughout the year, others (e.g., phlebotomine sand flies) are most active during the summer season. Accordingly, control strategies, such as those relying on the systematic use of acaricides and insecticides, should be planned on the basis of the ecology of both vectors and pathogens in different geographical areas in order to improve their effectiveness in reducing the risk of infection by vector-borne pathogens. This article reviews the current situation and perspectives of canine and feline vector-borne diseases in Italy.
On the validity of “Candidatus Dirofilaria hongkongensis” and on the use of the provisional status Candidatus in zoological nomenclature
The fast development of molecular taxonomy is impacting our knowledge of the world parasite diversity at an unprecedented level. A number of operational taxonomic units have been uncovered and new species described. However, it is not always that new parasite species are being described in compliance with the International Code of Zoological Nomenclature. This is the case of “ Candidatus Dirofilaria hongkongensis”, a nematode found in dogs, jackals and humans in Hong Kong and parts of India. This name has been proposed without a formal description and without the designation of a holotype, and therefore is an unavailable name. Finally, we argue that using the provisional status Candidatus in zoological nomenclature is inappropriate, considering this term is not considered in the International Code of Zoological Nomenclature.