Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
246
result(s) for
"Otsuka Yuichi"
Sort by:
Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere
2018
This paper provides a brief review of ionospheric irregularities that occur in magnetically equatorial and low-latitude regions post-midnight during low solar activity periods. Ionospheric irregularities can occur in equatorial plasma bubbles. Plasma bubbles are well-known to frequently occur post-sunset when the solar terminator is nearly parallel to the geomagnetic field lines (during equinoxes at the longitude where the declination of the geomagnetic field is almost equal to zero and near the December solstice at the longitude where the declination is tilted westward), especially during high solar activity conditions via the Rayleigh–Taylor instability. However, recent observations during a solar minimum period show a high occurrence rate of irregularities post-midnight around the June solstice. The mechanisms for generating the post-midnight irregularities are still unknown, but two candidates have been proposed. One candidate is the seeding of the Rayleigh–Taylor instability by atmospheric gravity waves propagating from below into the ionosphere. The other candidate is the uplift of the F layer by the meridional neutral winds in the thermosphere, which may be associated with midnight temperature maximums in the thermosphere.
Journal Article
Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons
by
Yunoki, Seiji
,
Sorella, Sandro
,
Otsuka, Yuichi
in
Band theory
,
Condensed matter physics
,
Critical temperature
2016
The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.
Journal Article
Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice
by
Yunoki, Seiji
,
Sorella, Sandro
,
Otsuka, Yuichi
in
639/301/119
,
639/301/119/995
,
639/301/119/999
2012
A spin liquid is a novel quantum state of matter with no conventional order parameter where a finite charge gap exists even though the band theory would predict metallic behavior. Finding a stable spin liquid in two or higher spatial dimensions is one of the most challenging and debated issues in condensed matter physics. Very recently, it has been reported that a model of graphene, i.e., the Hubbard model on the honeycomb lattice, can show a spin liquid ground state in a wide region of the phase diagram, between a semi-metal (SM) and an antiferromagnetic insulator (AFMI). Here, by performing numerically exact quantum Monte Carlo simulations, we extend the previous study to much larger clusters (containing up to 2592 sites) and find, if any, a very weak evidence of this spin liquid region. Instead, our calculations strongly indicate a direct and continuous quantum phase transition between SM and AFMI.
Journal Article
Challenges to Equatorial Plasma Bubble and Ionospheric Scintillation Short-Term Forecasting and Future Aspects in East and Southeast Asia
2021
Equatorial plasma bubbles (EPBs) can cause rapid fluctuations in amplitude and phase of radio signals traversing the ionosphere and in turn produce serious ionospheric scintillations and disrupt satellite-based communication links. Whereas numerous studies on the generation and evolution of EPBs have been performed, the prediction of EPB and ionospheric scintillation occurrences still remains unresolved. The generalized Rayleigh–Taylor (R–T) instability has been widely accepted as the physical mechanism responsible for the generation of EPBs. But how the factors, which seed the development of R–T instability and control the dynamics of EPBs and resultant ionospheric scintillations, change on a short-term basis are not clear. In the East and Southeast Asia, there exist significant differences in the generation rates of EPBs at closely located stations, for example, Kototabang (0.2°S, 100.3°E) and Sanya (18.3°N, 109.6°E), indicating that the decorrelation distance of EPB generation is small (hundreds of kilometers) in longitude. In contrast, after the initial generation of EPBs at one longitude, they can drift zonally more than 2000 km and extend from the magnetic equator to middle latitudes of 40° or higher under some conditions. These features make it difficult to identify the possible seeding sources for the EPBs and to accurately predict their occurrence, especially when the onset locations of EPBs are far outside the observation sector. This paper presents a review on the current knowledge of EPBs and ionospheric scintillations in the East and Southeast Asia, including their generation mechanism and occurrence morphology, and discusses some unresolved issues related to their short-term forecasting, including (1) what factors control the generation of EPBs, its day-to-day variability and storm-time behavior, (2) what factors control the evolution and lifetime of EPBs, and (3) how to accurately determine ionospheric scintillation from EPB measurements. Special focus is given to the whole process of the EPB generation, development and disruption. The current observing capabilities, future new facilities and campaign observations in the East and Southeast Asia in helping to better understand the short-term variability of EPBs and ionospheric scintillations are outlined.
Journal Article
Solar activity dependence of medium-scale traveling ionospheric disturbances using GPS receivers in Japan
by
Shinbori Atsuki
,
Nishioka Michi
,
Otsuka Yuichi
in
Atmospheric gravity waves
,
Daytime
,
Dependence
2021
In order to reveal solar activity dependence of the medium-scale traveling ionospheric disturbances (MSTIDs) at midlatitudes, total electron content (TEC) data obtained from a Global Positioning System (GPS) receiver network in Japan during 22 years from 1998 to 2019 were analyzed. We have calculated the detrended TEC by subtracting the 1-h running average from the original TEC data for each satellite and receiver pair, and made two-dimensional TEC maps of the detrended TEC with a spatial resolution of 0.15° × 0.15° in longitude and latitude. We have investigated MSTID activity, defined as δI/I¯, where δI and I¯ are standard deviation of the detrended TEC and the average vertical TEC within the area of 133.0°–137.0° E and 33.0°–37.0° N for 1 h, respectively. From each 2-h time series of the detrended TEC data within the same area as the MSTID activity, auto-correlation functions (ACFs) of the detrended TEC were calculated to estimate the horizontal propagation velocity and direction of the MSTIDs. Statistical results of the MSTID activity and propagation direction of MSTIDs were consistent with previous studies and support the idea that daytime MSTIDs could be caused by atmospheric gravity waves, and that nighttime MSTIDs were caused by electro-dynamical forces, such as the Perkins instability. From the current long-term observations, we have found that the nighttime MSTID activity and occurrence rate increased with decreasing solar activity. For the daytime MSTID, the occurrence rate increased with decreasing solar activity, whereas the MSTID activity did not show distinct solar activity dependence. These results suggest that the secondary gravity waves generated by dissipation of the primary gravity waves propagating from below increase under low solar activity conditions. The mean horizontal phase velocity of the MSTIDs during nighttime did not show a distinct solar activity dependence, whereas that during daytime showed an anticorrelation with solar activity. The horizontal phase velocity of the daytime MSTIDs was widely distributed from 40 to 180 m/s under high solar activity conditions, whereas it ranged between 80 and 200 m/s, with a maximum occurrence at 130 m/s under low solar activity conditions, suggesting that gravity waves with low phase velocity could be dissipated by high viscosity in the thermosphere under low solar activity conditions.
Journal Article
High‐Resolution GNSS Tomography of Storm‐Enhanced Density and Embedded Depletions Over Japan During the May 2024 Super Geomagnetic Storm
by
Ssessanga, Nicholas
,
Yokoyama, Tatsuhiro
,
Fu, Weizheng
in
Electron density
,
Electrons
,
Geomagnetic field
2025
The Asian sector is reported to have experienced a strong electron density enhancement during the May 2024 super geomagnetic storm between local evening and sunrise. We present a high‐resolution 3‐D ionospheric reconstructions over Japan using computerized ionospheric tomography (CIT) facilitated by a dense Global Navigation Satellite System (GNSS) network. Results reveals storm‐enhanced density (SED) features characterized by increases in total electron content (TEC) and F2‐layer peak density (NmF2), elevated height (hmF2), and increased electron densities at higher altitudes. Spatially, the SED structures extended ∼ ${\\sim} $1,000 km latitudinally and 300 km vertically. Within these enhancements, large‐scale electron density depletions, spanning over 600 km and aligned with geomagnetic field lines, were identified. We hypothesize these depletions as equatorial plasma bubbles (EPBs) that extend into mid‐latitudes while remaining embedded in the SED. These results, highlight the capability of GNSS‐based 3‐D CIT in extending a quantitative understanding of complex ionospheric features during extreme events.
Journal Article
Electromagnetic conjugacy of ionospheric disturbances after the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations
by
Sori, Takuya
,
Perwitasari, Septi
,
Shinbori, Atsuki
in
Acoustic waves
,
Amplitudes
,
Atmospheric disturbances
2022
To elucidate the characteristics of electromagnetic conjugacy of traveling ionospheric disturbances just after the 15 January 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption, we analyze Global Navigation Satellite System-total electron content data and ionospheric plasma velocity data obtained from the Super Dual Auroral Radar Network Hokkaido pair of radars. Further, we use thermal infrared grid data with high spatial resolution observed by the Himawari 8 satellite to identify lower atmospheric disturbances associated with surface air pressure waves propagating as a Lamb mode. After 07:30 UT on 15 January, two distinct traveling ionospheric disturbances propagating in the westward direction appeared in the Japanese sector with the same structure as those at magnetically conjugate points in the Southern Hemisphere. Corresponding to these traveling ionospheric disturbances with their large amplitude of 0.5 – 1.1 × 1016 el/m2 observed in the Southern Hemisphere, the plasma flow direction in the F region changed from southward to northward. At this time, the magnetically conjugate points in the Southern Hemisphere were located in the sunlit region at a height of 105 km. The amplitude and period of the plasma flow variation are ~ 100–110 m/s and ~ 36–38 min, respectively. From the plasma flow perturbation, a zonal electric field is estimated as ~ 2.8–3.1 mV/m. Further, there is a phase difference of ~ 10–12 min between the total electron content and plasma flow perturbations. This result suggests that the external electric field variation generates the traveling ionospheric disturbances observed in both Southern and Northern Hemispheres. The origin of the external electric field is an E-region dynamo driven by the neutral wind oscillation associated with atmospheric acoustic waves and gravity waves. Finally, the electric field propagates to the F region and magnetically conjugate ionosphere along magnetic field lines with the local Alfven speed, which is much faster than that of Lamb mode waves. From these observational facts, it can be concluded that the E-region dynamo electric field produced in the sunlit Southern Hemisphere is a main cause of the two distinct traveling ionospheric disturbances appearing over Japan before the arrival of the air pressure disturbances.
Journal Article
A confirmation of vertical acoustic resonance and field-aligned current generation just after the 2022 Hunga Tonga Hunga Ha’apai volcanic eruption
by
Iyemori, Toshihiko
,
Nishioka, Michi
,
Otsuka, Yuichi
in
Acoustic resonance
,
Conjugate points
,
Correlation analysis
2022
A strong volcanic eruption caused a clear vertical acoustic resonance between the sea surface and the thermosphere. Its effects are observed as geomagnetic and GPS-TEC oscillations near the volcano and its geomagnetic conjugate area. The geomagnetic oscillations are observed at Apia and Honolulu geomagnetic observatories with amplitude of about 2 nT and 0.2 nT, respectively. The volcanic eruption started around 04:14 UT on January 15, 2022. The oscillations appeared at 04:21UT at Apia, Samoa, only about 7 min after the start of eruption. Because the distance between the volcano and Apia is about 841 km, it takes about 40 min for a sound wave to propagate from the volcano to Apia. Therefore, it is more plausible to assume that the magnetic oscillation observed at Apia about 7 min after the eruption is caused by the sound waves propagated vertically upward to the ionosphere and generated an electric current. The coherent appearance of geomagnetic oscillation at Honolulu located near the geomagnetic conjugate point of the volcano strongly support the idea that the ionospheric current generated over the volcano diverted as a field-aligned current which flew to the opposite hemisphere and caused the geomagnetic oscillation at Honolulu. The earliest start of GPS-TEC oscillation was around 04:15UT near the volcanic eruption, and it was around 04:20 UT at KOKV station in Hawaii. The time-lag of the TEC variations between Samoa and Hawaii obtained by a cross-correlation analysis is 4.5 min or 8.5 min. These time differences are much smaller than the travel time of the seismic waves from the volcano to Hawaii islands. Therefore, it is suggested that the electric field transmitted along geomagnetic field caused the TEC variation observed over Hawaii Islands. A sawtooth waveform of geomagnetic oscillation observed at Apia and Honolulu is analyzed and a possible generation mechanism is discussed.
Journal Article
High-resolution 3-D imaging of electron density perturbations using ultra-dense GNSS observation networks in Japan: an example of medium-scale traveling ionospheric disturbances
2024
For the first time using computerized ionospheric tomography (CIT) and leveraging ultra-dense slant total electron content (STEC) measurements derived from two ground-based Global Navigation Satellite System (GNSS) receiver networks in Japan, we have reconstructed the 3-D field-aligned structure of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) with high spatiotemporal resolution. The CIT algorithm focuses on electron density perturbation components, allowing for the imaging of disturbances with small amplitudes and scales. Slant TECs used for CIT are setup to consist of two components: the background derived from IRI-2016 model and TEC perturbations obtained by subtracting a 30-min running average from observations. The resolution is set to 0.25º in latitude and longitude, 10 km in altitude, 30 s in time. Simulations were conducted to assess the performance of the CIT algorithm, revealing that this technique has good fidelity by accurately reconstructing more than 80% of the electron density perturbations. The focus is on the nighttime event of July 4, 2022, when data were accessible. The reconstruction results show that the MSTIDs initially form at lower altitudes and subsequently develop to exhibit large amplitudes and scales that extend to higher altitudes, characterized by a well-defined frontal structure with electrodynamic signatures. These results are consistent with theories and snippets of observational evidence regarding electromagnetic-influenced MSTIDs, hence affirming the effectiveness of the developed CIT technique in probing of the variations in the 3-D structure of ionospheric electron density. This is expected to contribute to a compressive understanding of the underlying mechanisms of ionospheric inhomogeneities.
Graphical Abstract
Journal Article
Higher-order topological Mott insulator on the pyrochlore lattice
by
Yunoki, Seiji
,
Kudo, Koji
,
Otsuka, Yuichi
in
639/766/119
,
639/766/483
,
Humanities and Social Sciences
2021
We provide the first unbiased evidence for a higher-order topological Mott insulator in three dimensions by numerically exact quantum Monte Carlo simulations. This insulating phase is adiabatically connected to a third-order topological insulator in the noninteracting limit, which features gapless modes around the corners of the pyrochlore lattice and is characterized by a
Z
4
spin-Berry phase. The difference between the correlated and non-correlated topological phases is that in the former phase the gapless corner modes emerge only in spin excitations being Mott-like. We also show that the topological phase transition from the third-order topological Mott insulator to the usual Mott insulator occurs when the bulk spin gap solely closes.
Journal Article