Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
16
result(s) for
"Ouma, Yashon O."
Sort by:
Urban land-use classification using machine learning classifiers: comparative evaluation and post-classification multi-feature fusion approach
by
Keitsile, Amantle
,
Odirile, Phillimon
,
Ouma, Yashon O.
in
Boundary conditions
,
Classification
,
Classifiers
2023
Accurate spatial-temporal mapping of urban land-use and land-cover (LULC) provides critical information for planning and management of urban environments. While several studies have investigated the significance of machine learning classifiers for urban land-use mapping, the determination of the optimal classifiers for the extraction of specific urban LULC classes in time and space is still a challenge especially for multitemporal and multisensor data sets. This study presents the results of urban LULC classification using decision tree-based classifiers comprising of gradient tree boosting (GTB), random forest (RF), in comparison with support vector machine (SVM) and multilayer perceptron neural networks (MLP-ANN). Using Landsat data from 1984 to 2020 at 5-year intervals for the Greater Gaborone Planning Area (GGPA) in Botswana, RF was the best classifier with overall average accuracy of 92.8%, MLP-ANN (91.2%), SVM (90.9%) and GTB (87.8%). To improve on the urban LULC mapping, the study presents a post-classification multiclass fusion of the best classifier results based on the principle of feature in-feature out (FEI-FEO) under mutual exclusivity boundary conditions. Through classifier ensemble, the FEI-FEO approach improved the overall LULC classification accuracy by more than 2% demonstrating the advantage of post-classification fusion in urban land-use mapping.
Journal Article
Use of Artificial Neural Networks and Multiple Linear Regression Model for the Prediction of Dissolved Oxygen in Rivers: Case Study of Hydrographic Basin of River Nyando, Kenya
by
Ouma, Yashon O.
,
Njau, Evalyne N.
,
Okuku, Clinton O.
in
Agriculture
,
Analysis
,
Artificial neural networks
2020
The process of predicting water quality over a catchment area is complex due to the inherently nonlinear interactions between the water quality parameters and their temporal and spatial variability. The empirical, conceptual, and physical distributed models for the simulation of hydrological interactions may not adequately represent the nonlinear dynamics in the process of water quality prediction, especially in watersheds with scarce water quality monitoring networks. To overcome the lack of data in water quality monitoring and prediction, this paper presents an approach based on the feedforward neural network (FNN) model for the simulation and prediction of dissolved oxygen (DO) in the Nyando River basin in Kenya. To understand the influence of the contributing factors to the DO variations, the model considered the inputs from the available water quality parameters (WQPs) including discharge, electrical conductivity (EC), pH, turbidity, temperature, total phosphates (TPs), and total nitrates (TNs) as the basin land-use and land-cover (LULC) percentages. The performance of the FNN model is compared with the multiple linear regression (MLR) model. For both FNN and MLR models, the use of the eight water quality parameters yielded the best DO prediction results with respective Pearson correlation coefficient R values of 0.8546 and 0.6199. In the model optimization, EC, TP, TN, pH, and temperature were most significant contributing water quality parameters with 85.5% in DO prediction. For both models, LULC gave the best results with successful prediction of DO at nearly 98% degree of accuracy, with the combination of LULC and the water quality parameters presenting the same degree of accuracy for both FNN and MLR models.
Journal Article
Soil Erosion Susceptibility Prediction in Railway Corridors Using RUSLE, Soil Degradation Index and the New Normalized Difference Railway Erosivity Index (NDReLI)
by
Ouma, Yashon O.
,
Tateishi, Ryutaro
,
Lottering, Lone
in
Arid environments
,
Arid zones
,
Aridity
2022
This study presents a remote sensing-based index for the prediction of soil erosion susceptibility within railway corridors. The empirically derived index, Normalized Difference Railway Erosivity Index (NDReLI), is based on the Landsat-8 SWIR spectral reflectances and takes into account the bare soil and vegetation reflectances especially in semi-arid environments. For the case study of the Botswana Railway Corridor (BRC), the NDReLI results are compared with the RUSLE and the Soil Degradation Index (SDI). The RUSLE model showed that within the BRC, the mean annual soil loss index was at 0.139 ton ha−1 year−1, and only about 1% of the corridor area is susceptible to high (1.423–3.053 ton ha−1 year−1) and very high (3.053–5.854 ton ha−1 year−1) soil loss, while SDI estimated 19.4% of the railway corridor as vulnerable to soil degradation. NDReLI results based on SWIR1 (1.57–1.65 μm) predicted the most vulnerable areas, with a very high erosivity index (0.36–0.95), while SWIR2 (2.11–2.29 μm) predicted the same regions at a high erosivity index (0.13–0.36). From empirical validation using previous soil erosion events within the BRC, the proposed NDReLI performed better than the RUSLE and SDI models in the prediction of the spatial locations and extents of susceptibility to soil erosion within the BRC.
Journal Article
Large-Scale Topographic Mapping Using RTK-GNSS and Multispectral UAV Drone Photogrammetric Surveys: Comparative Evaluation of Experimental Results
2025
The automation in image acquisition and processing using UAV drones has the potential to acquire terrain data that can be utilized for the accurate production of 2D and 3D digital data. In this study, the DJI Phantom 4 drone was employed for large-scale topographical mapping, and based on the photogrammetric Structure-from-Motion (SfM) algorithm, drone-derived point clouds were used to generate the terrain DSM, DEM, contours, and the orthomosaic from which the topographical map features were digitized. An evaluation of the horizontal (X, Y) and vertical (Z) coordinates of the UAV drone points and the RTK-GNSS survey data showed that the Z-coordinates had the highest MAE(X,Y,Z), RMSE(X,Y,Z) and Accuracy(X,Y,Z) errors. An integrated georeferencing of the UAV drone imagery using the mobile RTK-GNSS base station improved the 2D and 3D positional accuracies with an average 2D (X, Y) accuracy of <2 mm and height accuracy of −2.324 mm, with an overall 3D accuracy of −4.022 mm. Geometrically, the average difference in the perimeter and areas of the features from the RTK-GNSS and UAV drone topographical maps were −0.26% and −0.23%, respectively. The results achieved the recommended positional accuracy standards for the production of digital geospatial data, demonstrating the cost-effectiveness of low-cost UAV drones for large-scale topographical mapping.
Journal Article
Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment
2014
This study aims at providing expertise for preparing public-based flood mapping and estimating flood risks in growing urban areas. To model and predict the magnitude of flood risk areas, an integrated Analytical Hierarchy Process (AHP) and Geographic Information System (GIS) analysis techniques are used for the case of Eldoret Municipality in Kenya. The flood risk vulnerability mapping follows a multi-parametric approach and integrates some of the flooding causative factors such as rainfall distribution, elevation and slope, drainage network and density, land-use/land-cover and soil type. From the vulnerability mapping, urban flood risk index (UFRI) for the case study area, which is determined by the degree of vulnerability and exposure is also derived. The results are validated using flood depth measurements, with a minimum average difference of 0.01 m and a maximum average difference of 0.37 m in depth of observed flooding in the different flood prone areas. Similarly with respect to area extents, a maximum error of not more than 8% was observed in the highly vulnerable flood zones. In addition, the Consistency Ratio which shows an acceptable level of 0.09 was calculated and further validated the strength of the proposed approach.
Journal Article
Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learning: Overview and Case Study Application Using Multiparametric Spatial Data in Data-Scarce Urban Environments
2023
This study presents results for urban flood susceptibility mapping (FSM) using image-based 2D-convolutional neural networks (2D-CNN). The model input multiparametric spatial data comprised of land-useland-cover (LULC), digital elevation model (DEM), and the topographic and hydrologic conditioning derivatives, precipitation, and soil types. The implemented dropout regularization 2D-CNN with ReLU activation function, categorical cross-entropy loss function, and AdaGrad optimizer produced the case study area FSM with overall accuracy (OA) of 82.5%. The image-based 2D-CNN outperformed the multilayer perceptron (MLP) neural network by 18.4% in terms of overall accuracy and with corresponding lower MAE and higher F1-measures of 10.9% and 0.989, as compared to 25.6% and 0.877, respectively, for MLP-ANN results. The accuracy of the 2D-CNN that produced FSM map and the model efficiency were evaluated using area under the ROC curve (AUC) with respective success and prediction rates of 0.827 and 0.809. Using image-based 2D-CNN, 27% of the 247.7 km2 of the studied area was mapped with a high risk of flooding, with MLP-ANN overestimating the degree of high flood risk by 4.7%. Based on the gain ratio index analysis of the flood conditioning factors (FCFs), the most significant FCFs were LULC (18.5%), precipitation (14.9%), proximity to river (13.3%), and elevation (12.4%). Soil types contributed 8.6%, slope 9.1%, and the DEM-derived hodological conditioning indicators contributed 23.2%. The study results demonstrate that in urban areas with scarce hydrological monitoring networks, the use of image-based 2D-CNN with multiparametric spatial data can produce high-quality flood susceptibility maps for flood management in urban environments.
Journal Article
Comparison of Fuzzy AHP and Fuzzy TOPSIS for Road Pavement Maintenance Prioritization: Methodological Exposition and Case Study
by
Ouma, Yashon O.
,
Nyambenya, S.
,
Opudo, J.
in
Analytic hierarchy process
,
Asphalt
,
Case studies
2015
For road pavement maintenance and repairs prioritization, a multiattribute approach that compares fuzzy Analytical Hierarchy Process (AHP) and fuzzy Technique for Order Preference by Ideal Situation (TOPSIS) is evaluated. The pavement distress data was collected through empirical condition surveys and rating by pavement experts. In comparison to the crisp AHP, the fuzzy AHP and fuzzy TOPSIS pairwise comparison techniques are considered to be more suitable for the subjective analysis of the pavement conditions for automated maintenance prioritization. From the case study results, four pavement maintenance objectives were determined as road safety, pavement surface preservation, road operational status and standards, and road aesthetics, with corresponding depreciating significance weights of W=0.37,0.31,0.22,0.10T. The top three maintenance functions were identified as Thin Hot Mix Asphalt (HMA) overlays, resurfacing and slurry seals, which were a result of pavement cracking, potholes, raveling, and patching, while the bottom three were cape seal, micro surfacing, and fog seal. The two methods gave nearly the same prioritization ranking. In general, the fuzzy AHP approach tended to overestimate the maintenance prioritization ranking as compared to the fuzzy TOPSIS.
Journal Article
Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basin
by
Wachera, Alice N.
,
Ouma, Yashon O.
,
Cheruyot, Rodrick
in
Atmospheric models
,
Basins
,
Complexity
2022
This study compares LSTM neural network and wavelet neural network (WNN) for spatio-temporal prediction of rainfall and runoff time-series trends in scarcely gauged hydrologic basins. Using long-term in situ observed data for 30 years (1980–2009) from ten rain gauge stations and three discharge measurement stations, the rainfall and runoff trends in the Nzoia River basin are predicted through satellite-based meteorological data comprising of: precipitation, mean temperature, relative humidity, wind speed and solar radiation. The prediction modelling was carried out in three sub-basins corresponding to the three discharge stations. LSTM and WNN were implemented with the same deep learning topological structure consisting of 4 hidden layers, each with 30 neurons. In the prediction of the basin runoff with the five meteorological parameters using LSTM and WNN, both models performed well with respective
R
2
values of 0.8967 and 0.8820. The MAE and RMSE measures for LSTM and WNN predictions ranged between 11–13 m
3
/s for the mean monthly runoff prediction. With the satellite-based meteorological data, LSTM predicted the mean monthly rainfall within the basin with
R
2
= 0.8610 as compared to
R
2
= 0.7825 using WNN. The MAE for mean monthly rainfall trend prediction was between 9 and 11 mm, while the RMSE varied between 15 and 21 mm. The performance of the models improved with increase in the number of input parameters, which corresponded to the size of the sub-basin. In terms of the computational time, both models converged at the lowest RMSE at nearly the same number of epochs, with WNN taking slightly longer to attain the minimum RMSE. The study shows that in hydrologic basins with scarce meteorological and hydrological monitoring networks, the use satellite-based meteorological data in deep learning neural network models are suitable for spatial and temporal analysis of rainfall and runoff trends.
Journal Article
Evaluation of Multiresolution Digital Elevation Model (DEM) from Real-Time Kinematic GPS and Ancillary Data for Reservoir Storage Capacity Estimation
2016
This study presents the estimation of reservoir storage capacity using multiresolution Real-Time Kinematic Global Positioning System (RTK-GPS) DEM, in comparison with ASTER and contour-derived DEM. Through RMSE comparisons of the elevation point uncertainty and error analysis, the results shows that the RTK-GPS DEM gave the best results for the reservoir capacity-area power curve estimation, defined by a convex slope with an exponential deterministic relationship given by V = 0.09 × A 1.435 . The results further show the existence an empirical relationship between the reservoir volume certainty and the GPS point density d i as V e = c × d i ρ . This relationship is dependent on the reservoir terrain, slope and surface area. Validation of the results with in situ data showed the differences between the simulated and observed storage volumes was less than +10%, and using the Nash-Sutcliffe coefficient of efficiency on the storage volumes, an average efficiency of +0.7 on the monthly observed and simulated reservoir storage volume was observed.
Journal Article
Land-Use Change Prediction in Dam Catchment Using Logistic Regression-CA, ANN-CA and Random Forest Regression and Implications for Sustainable Land–Water Nexus
2024
For sustainable water resource management within dam catchments, accurate knowledge of land-use and land-cover change (LULCC) and the relationships with dam water variability is necessary. To improve LULCC prediction, this study proposes the use of a random forest regression (RFR) model, in comparison with logistic regression–cellular automata (LR-CA) and artificial neural network–cellular automata (ANN-CA), for the prediction of LULCC (2019–2030) in the Gaborone dam catchment (Botswana). RFR is proposed as it is able to capture the existing and potential interactions between the LULC intensity and their nonlinear interactions with the change-driving factors. For LULCC forecasting, the driving factors comprised physiographic variables (elevation, slope and aspect) and proximity-neighborhood factors (distances to water bodies, roads and urban areas). In simulating the historical LULC (1986–2019) at 5-year time steps, RFR outperformed ANN-CA and LR-CA models with respective percentage accuracies of 84.9%, 62.1% and 60.7%. Using the RFR model, the predicted LULCCs were determined as vegetation (−8.9%), bare soil (+8.9%), built-up (+2.49%) and cropland (−2.8%), with water bodies exhibiting insignificant change. The correlation between land use (built-up areas) and water depicted an increasing population against decreasing dam water capacity. The study approach has the potential for deriving the catchment land–water nexus, which can aid in the formulation of sustainable catchment monitoring and development strategies.
Journal Article