Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
56
result(s) for
"Overwijk, Willem"
Sort by:
Adjuvants for peptide-based cancer vaccines
2016
Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-cancer vaccination; but despite great success in animal models, only a few of many cancer vaccine trials have demonstrated robust clinical benefit. One reason for this difference may be the use of potent, effective vaccine adjuvants in animal models, vs. the use of safe, but very weak, vaccine adjuvants in clinical trials. As vaccine adjuvants dictate the type and magnitude of the T cell response after vaccination, it is critical to understand how they work to design safe, but also effective, cancer vaccines for clinical use. Here we discuss current insights into the mechanism of action and practical application of vaccine adjuvants, with a focus on peptide-based cancer vaccines.
Journal Article
Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function
by
Young-hee Lee Natalia Martin-Orozco Peilin Zheng Jing Li Peng Zhang Haidong Tan Hyun Jung Park Mira Jeong Seon Hee Chang Byung-Seok Kim Wei Xiong Wenjuan Zang Li Guo Yang Liu Zhong-jun Dong Willem W Overwijk Patrick Hwu Qing Yi Larry Kwak Zhiying Yang Tak W Mak Wei-Li Laszlo G Radvanyi Ling Ni Dongfang Liu Chen Dong
in
631/250/1619
,
631/45/612/1237
,
631/67/580
2017
The interaction between tumor and the immune system is still poorly understood. Significant clinical responses have been achieved in cancer patients treated with antibodies against the CTLA4 and PD-1/PD-L1 checkpoints; however, only a small portion of patients responded to the therapies, indicating a need to explore additional co-inhibitory molecules for cancer treatment. B7-H3, a member of the B7 superfamily, was previously shown by us to inhibit T-cell activation and autoimmunity. In this study, we have analyzed the function of BT-H3 in tumor immunity. Expression of B7-H3 was found in multiple tumor lines, tumor-infiltrating dendritic cells, and macrophages. B7-H3-deficient mice or mice treated with an antagonistic antibody to B7-H3 showed reduced growth of multiple tumors, which depended on NK and CD8^+ T cells. With a putative receptor expressed by cytotoxic lymphocytes, B7-H3 inhibited their activation, and its deficiency resulted in increased cytotoxic lymphocyte function in tumor-bearing mice. Combining blockades of B7-H3 and PD-1 resulted in further enhanced therapeutic control of late-stage tumors. Taken together, our results indicate that the B7-H3 checkpoint may serve as a novel target for immunotherapy against cancer.
Journal Article
Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy
2020
High dose interleukin-2 (IL-2) is active against metastatic melanoma and renal cell carcinoma, but treatment-associated toxicity and expansion of suppressive regulatory T cells (Tregs) limit its use in patients with cancer. Bempegaldesleukin (NKTR-214) is an engineered IL-2 cytokine prodrug that provides sustained activation of the IL-2 pathway with a bias to the IL-2 receptor CD122 (IL-2Rβ). Here we assess the therapeutic impact and mechanism of action of NKTR-214 in combination with anti-PD-1 and anti-CTLA-4 checkpoint blockade therapy or peptide-based vaccination in mice. NKTR-214 shows superior anti-tumor activity over native IL-2 and systemically expands anti-tumor CD8
+
T cells while inducing Treg depletion in tumor tissue but not in the periphery. Similar trends of intratumoral Treg dynamics are observed in a small cohort of patients treated with NKTR-214. Mechanistically, intratumoral Treg depletion is mediated by CD8
+
Teff-associated cytokines IFN-γ and TNF-α. These findings demonstrate that NKTR-214 synergizes with T cell-mediated anti-cancer therapies.
Interleukin-2 can induce an anti-tumour response, but is associated with toxicity. Here, the authors demonstrate that an engineered interleukin-2 promotes intratumoral T regulatory cell depletion while enhancing effective anti-tumour CD8
+
T cell responses that result in potent tumor suppression.
Journal Article
The immune system in cancer metastasis: friend or foe?
by
Overwijk, Willem W.
,
Janssen, Louise M.E.
,
Logsdon, Craig D.
in
Angiogenesis
,
Antigens
,
Cancer
2017
Metastatic disease is the leading cause of death among cancer patients and involves a complex and inefficient process. Every step of the metastatic process can be rate limiting and is influenced by non-malignant host cells interacting with the tumor cell. Over a century ago, experiments first indicated a link between the immune system and metastasis. This phenomenon, called concomitant immunity, indicates that the primary tumor induces an immune response, which may not be sufficient to destroy the primary tumor, but prevents the growth of a secondary tumor or metastases. Since that time, many different immune cells have been shown to play a role in both inhibiting and promoting metastatic disease. Here we review classic and new observations, describing the links between the immune system and metastasis that inform the development of cancer therapies.
Journal Article
LFA-1 activation enriches tumor-specific T cells in a cold tumor model and synergizes with CTLA-4 blockade
by
Vanderslice, Peter
,
Hailemichael, Yared
,
Nielsen, Michael C.
in
Antigens
,
Antitumor activity
,
Apoptosis
2022
The inability of CD8+ T effectors (Teff) to reach tumor cells is an important mechanism of tumor resistance to cancer immunotherapy. The recruitment of these cells to the tumor microenvironment (TME) is regulated by integrins, a family of adhesion molecules that is expressed on T cells. Here we show that 7HP349, a small molecule activator of Lymphocyte function-associated antigen-1 (LFA-1) and very late activation antigen-4 (VLA-4) integrin-cell-adhesion receptors, facilitated the preferential localization of tumor-specific T cells to the tumor and improve antitumor response. 7HP349 monotherapy had modest effects on anti- programmed death 1 (PD-1)-resistant tumors, whereas combinatorial treatment with anti- T-lymphocyte-associated protein 4 (CTLA-4) therapy increased CD8+ Teff intratumoral sequestration and synergized in inducing cancer regression, in cooperation with neutrophils. 7HP349 intratumoral CD8+ Teff enrichment activity depended on CXCL12. We analyzed gene expression profiles using RNA from baseline and on treatment tumor samples of 14 melanoma patients. We identified baseline CXCL12 gene expression may improve response likelihood to anti-CTLA-4 therapies. Our results provided a proof-of-principle demonstration that LFA-1 activation could convert a T cell-exclusionary TME to a T-cell enriched TME through mechanisms involving cooperation with innate immune cells.
Journal Article
Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion
by
Ye, Yang
,
Greeley, Nathaniel R
,
Hailemichael, Yared
in
631/250/1619/554/1834
,
631/250/580
,
631/250/590
2013
Cancer vaccines have had limited success in eliminating tumors in patients. Here Willem Overwijk and colleagues report that one reason for the failure of peptide-based vaccines may be their formulation. Their research shows that peptides formulated in incomplete Freund's adjuvant sequester CD8+ T cells at the site of injection, leading to T cell dysfunction and eventual apoptosis. A peptide and adjuvant formulation that did not persist long term at the injection site showed superior ability to induce a functional antitumor T cell response.
To understand why cancer vaccine–induced T cells often do not eradicate tumors, we studied immune responses in mice vaccinated with gp100 melanoma peptide in incomplete Freund's adjuvant (peptide/IFA), which is commonly used in clinical cancer vaccine trials. Peptide/IFA vaccination primed tumor-specific CD8
+
T cells, which accumulated not in tumors but rather at the persisting, antigen-rich vaccination site. Once there, primed T cells became dysfunctional and underwent antigen-driven, interferon-γ (IFN-γ)- and Fas ligand (FasL)-mediated apoptosis, resulting in hyporesponsiveness to subsequent vaccination. Provision of CD40-specific antibody, Toll-like receptor 7 (TLR7) agonist and interleukin-2 (IL-2) reduced T cell apoptosis but did not prevent vaccination-site sequestration. A nonpersisting vaccine formulation shifted T cell localization toward tumors, inducing superior antitumor activity while reducing systemic T cell dysfunction and promoting memory formation. These data show that persisting vaccine depots can induce specific T cell sequestration, dysfunction and deletion at vaccination sites; short-lived formulations may overcome these limitations and result in greater therapeutic efficacy of peptide-based cancer vaccines.
Journal Article
Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice
2014
Using an adapted competitive peptide phage display platform, Hong Qin and colleagues identify new candidate peptides specifically binding myeloid-derived suppressor cells (MDSCs), with which they generate peptide-Fc fusion proteins (peptibodies). The peptibodies deplete intra-umoral MDSCs in several mouse tumor models, in addition to those in blood and spleen, with limited off-target activity and superiority over standard depletion methods. Validation of this approach for cell type–specific surface marker discovery identified S100A9 as a target on the surface of MDSCs.
Immune evasion is an emerging hallmark of cancer progression. However, functional studies to understand the role of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment are limited by the lack of available specific cell surface markers. We adapted a competitive peptide phage display platform to identify candidate peptides binding MDSCs specifically and generated peptide-Fc fusion proteins (peptibodies). In multiple tumor models, intravenous peptibody injection completely depleted blood, splenic and intratumoral MDSCs in tumor-bearing mice without affecting proinflammatory immune cell types, such as dendritic cells. Whereas control Gr-1–specific antibody primarily depleted granulocytic MDSCs, peptibodies depleted both granulocytic and monocytic MDSC subsets. Peptibody treatment was associated with inhibition of tumor growth
in vivo
, which was superior to that achieved with Gr-1–specific antibody. Immunoprecipitation of MDSC membrane proteins identified S100 family proteins as candidate targets. Our strategy may be useful to identify new diagnostic and therapeutic surface targets on rare cell subtypes, including human MDSCs.
Journal Article
Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain
by
Curran, Michael A.
,
Hailemichael, Yared
,
Hwu, Patrick
in
631/67/1059/2325
,
631/67/1813/1634
,
631/67/580
2017
CD40 agonists bind the CD40 molecule on antigen-presenting cells and activate them to prime tumor-specific CD8
+
T cell responses. Here, we study the antitumor activity and mechanism of action of a nonreplicating adenovirus encoding a chimeric, membrane-bound CD40 ligand (ISF35). Intratumoral administration of ISF35 in subcutaneous B16 melanomas generates tumor-specific, CD8
+
T cells that express PD-1 and suppress tumor growth. Combination therapy of ISF35 with systemic anti-PD-1 generates greater antitumor activity than each respective monotherapy. Triple combination of ISF35, anti-PD-1, and anti-CTLA-4 results in complete eradication of injected and noninjected subcutaneous tumors, as well as melanoma tumors in the brain. Therapeutic efficacy is associated with increases in the systemic level of tumor-specific CD8
+
T cells, and an increased ratio of intratumoral CD8
+
T cells to CD4
+
Tregs. These results provide a proof of concept of systemic antitumor activity after intratumoral CD40 triggering with ISF35 in combination with checkpoint blockade for multifocal cancer, including the brain.
Treatment options for metastatic melanoma are limited. Here the authors show that combining an immunostimulant adenovirus, currently in clinical trials for leukemia, with immune checkpoints blockade (ICB) results in systemic eradication of ICB resistant melanoma tumours from both skin and brain of mice.
Journal Article
Intratumoral immunotherapy for melanoma
by
Overwijk, Willem W.
,
Singh, Manisha
in
Antigen (tumor-associated)
,
Antigens, Neoplasm - immunology
,
Cancer Research
2015
Selection of suitable tumor-associated antigens is a major challenge in the development of effective cancer vaccines. Intratumoral (i.t.) immunotherapy empowers the immune system to mount T cell responses against tumor-associated antigens which are most immunogenic. To mediate systemic tumor regression, i.t. immunotherapy must generate systemic T cell responses that can target distant metastases beyond the initially treated tumor mass. Now that promising preclinical results and some initial success in clinical trials have been obtained, we here review i.t. immunotherapy-related preclinical and clinical studies, their mechanisms of action and future prospects.
Journal Article
Human CD4+ T cells spontaneously detect somatic mutations in cancer cells
2015
CD4
+
helper T cells are immune cells that can specifically target cancer cells, but the antigens they recognize on tumor cells are mostly unknown. A new study shows that CD4
+
T cells recognize peptides encoded by mutated genes in human melanoma, opening the way for new approaches to cancer immunotherapy.
Journal Article