Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
94
result(s) for
"Owen-Smith, Norman"
Sort by:
Mechanisms of coexistence in diverse herbivore–carnivore assemblages: demographic, temporal and spatial heterogeneities affecting prey vulnerability
2015
Simple models coupling the dynamics of single predators to single prey populations tend to generate oscillatory dynamics of both predator and prey, or extirpation of the prey followed by that of the predator. In reality, such oscillatory dynamics may be counteracted by prey refugia or by opportunities for prey switching by the predator in multi‐prey assemblages. How these mechanisms operate depends on relative prey vulnerability, a factor ignored in simple interactive models. I outline how compositional, temporal, demographic and spatial heterogeneities help explain the contrasting effects of top predators on large herbivore abundance and population dynamics in species‐rich African savanna ecosystems compared with less species‐diverse northern temperate or subarctic ecosystems. Demographically, mortality inflicted by predation depends on the relative size and life history stage of the prey. Because all animals eventually die and are consumed by various carnivores, the additive component of the mortality inflicted is somewhat less than the predation rate. Prey vulnerability varies annually and seasonally, and between day and night. Spatial variation in the risk of predation depends on vegetation cover as well as on the availability of food resources. During times of food shortage, herbivores become prompted to occupy more risky habitats retaining more food. Predator concentrations dependent on the abundance of primary prey species may restrict the occurrence of other potential prey species less resistant to predation. The presence of multiple herbivore species of similar size in African savannas allows the top predator, the lion, to shift its prey selection flexibly dependent on changing prey vulnerability. Hence top–down and bottom–up influences on herbivore populations are intrinsically entangled. Models coupling the population dynamics of predators and prey need to accommodate the changing influences of prey demography, temporal variation in environmental conditions, and spatial variation in the relative vulnerability of alternative prey species to predation. Synthesis While re‐established predators have had major impacts on prey populations in northern temperate regions, multiple large herbivore species typically coexist along with diverse carnivores in African savanna ecosystems. In order to explain these contrasting outcomes, certain functional heterogeneities must be recognised, including relative vulnerability of alternative prey, temporal variation in the risk of predation, demographic differences in susceptibility to predation, and spatial contrasts in exposure to predation. Food shortfalls prompt herbivores to exploit more risky habitats, meaning that top–down and bottom–up influences on prey populations are intrinsically entangled. Models coupling the interactive dynamics of predator and prey populations need to incorporate these varying influences on relative prey vulnerability.
Journal Article
Carcass size shapes the structure and functioning of an African scavenging assemblage
by
Sebastián‐González, Esther
,
Sánchez‐Zapata, José A
,
Owen‐Smith, Norman
in
Biodiversity
,
biomass
,
Carnivores
2015
The particle size of the food resource strongly determines the structure and dynamics of food webs. However, the ecological implications of carcass size variation for scavenging networks structure and functioning have been largely overlooked. Here we investigate differences in scavenging patterns due to carcass size in a complex vertebrate scavenger community, Hluhluwe‐iMfolozi Park, South Africa, while taking into account seasonality. We monitored the consumption of three types of experimental carcasses: ‘small’ (< 10 kg), ‘medium’ (10–100 kg) and ‘large’ (> 100 kg). We employed general lineal models to explore the influence of carcass size on 1) scavenging network structure (scavenger species richness per carcass) and 2) functioning (carcass detection time, consumption time, consumption rate and percentage of carrion consumed). We also tested whether the structure of the scavenging network of each carcass size was nested, i.e. whether the scavenging assemblage in species‐poor carcasses was a subset of the assemblage consuming species‐rich carcasses. We found strong evidence indicating that carcass size is a major factor governing the associated scavenger assemblage. Scavenger species richness per carcass and carcass consumption time and rate increased with carcass size, while carcass detection time and percentage of carrion biomass consumed were negatively related to carcass size. Strikingly, most of the carrion biomass was consumed by facultative scavengers, represented by large mammalian carnivores, rather than by obligate scavengers (i.e. vultures). Scavenging network nestedness tended to be higher at larger carcasses, and nestedness was sensitive to the removal of the most connected species in the network (spotted hyena) rather than vultures. When comparing scavenging and predation assemblages, crucial size‐dependent differences emerge. Also, we identified a traditionally ignored mechanism by which hunting large prey could be relatively less profitable for predators, namely the costs associated with competition from scavengers and decomposers.
Journal Article
Spatial ecology of large herbivore populations
2014
Models of the dynamics of large herbivore populations represent density feedbacks on the population growth rate either directly or indirectly through interactions with vegetation resources. Neither approach incorporates the spatial heterogeneity that is an essential feature of most natural environments, and modifies the population dynamics generated. This is especially true for large herbivores exploiting food resources that are rooted in space but temporally variable in quantity and quality both seasonally and annually. In this review I explore how environmental variation at different spatiotemporal scales influences the abundance of herbivore populations controlled via resources, predators or social mechanisms. Changes in abundance can be spatially disparate and dependent on different resource components at different stages of the seasonal cycle, including buffer resources restricting population crashes in extremely adverse years. GPS telemetry enables movement responses generating spatial patterns to be documented in fine spatiotemporal detail, including migration and dispersal. Models incorporating spatial heterogeneity either implicitly or explicitly are outlined, exemplifying how herbivores cope with temporal variability by exploiting spatial variability in resources and conditions. Global human dominance is generating widened climatic variation while opportunities for herbivore movements are becoming constricted. Theoretical population ecologists need to shift their focus from the workings of demographic structure towards effects of changing environmental contexts, in order to project the likely trajectories of large herbivore populations through the Anthropocene.
Journal Article
Predator-prey size relationships in an African large-mammal food web
2008
1. Size relationships are central in structuring trophic linkages within food webs, leading to suggestions that the dietary niche of smaller carnivores is nested within that of larger species. However, past analyses have not taken into account the differing selection shown by carnivores for specific size ranges of prey, nor the extent to which the greater carcass mass of larger prey outweighs the greater numerical representation of smaller prey species in the predator diet. Furthermore, the top-down impact that predation has on prey abundance cannot be assessed simply in terms of the number of predator species involved. 2. Records of found carcasses and cause of death assembled over 46 years in the Kruger National Park, South Africa, corrected for under-recording of smaller species, enabled a definitive assessment of size relationships between large mammalian carnivores and their ungulate prey. Five carnivore species were considered, including lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), African wild dog (Lycaon pictus) and spotted hyena (Crocuta crocuta), and 22 herbivore prey species larger than 10 kg in adult body mass. 3. These carnivores selectively favoured prey species approximately half to twice their mass, within a total prey size range from an order of magnitude below to an order of magnitude above the body mass of the predator. The three smallest carnivores, i.e. leopard, cheetah and wild dog, showed high similarity in prey species favoured. Despite overlap in prey size range, each carnivore showed a distinct dietary preference. 4. Almost all mortality was through the agency of a predator for ungulate species up to the size of a giraffe (800-1200 kg). Ungulates larger than twice the mass of the predator contributed substantially to the dietary intake of lions, despite the low proportional mortality inflicted by predation on these species. Only for megaherbivores substantially exceeding 1000 kg in adult body mass did predation become a negligible cause of mortality. 5. Hence, the relative size of predators and prey had a pervasive structuring influence on biomass fluxes within this large-mammal food web. Nevertheless, the large carnivore assemblage was dominated overwhelmingly by the largest predator, which contributed the major share of animals killed across a wide size range.
Journal Article
Quantifying water requirements of African ungulates through a combination of functional traits
by
Kihwele, Emilian S.
,
Mchomvu, Victor
,
Potter, Arjun B.
in
Adaptation
,
climate
,
climate change
2020
Climate and land use change modify surface water availability in African savannas. Surface water is a key resource for both wildlife and livestock and its spatial and temporal distribution is important for understanding the composition of large herbivore assemblages in savannas. Yet, the extent to which ungulate species differ in their water requirements remains poorly quantified. Here, we infer the water requirements of 48 African ungulates by combining six different functional traits related to physiological adaptations to reduce water loss, namely minimum dung moisture, relative dung pellet size, relative surface area of the distal colon, urine osmolality, relative medullary thickness, and evaporation rate. In addition, we investigated how these differences in water requirements relate to differences in dietary water intake. We observed strong correlations between traits related to water loss through dung, urine and evaporation, suggesting that ungulates minimize water loss through multiple pathways simultaneously, which suggests that each trait can thus be used independently to predict water requirements. Furthermore, we found that browsers and grazers had similar water requirements, but browsers are expected to be less dependent on surface water because they acquire more water through their diet. We conclude that these key functional traits are a useful way to determine differences in water requirements and an important tool for predicting changes in herbivore community assembly resulting from changes in surface water availability.
Journal Article
Restricted habitat use by an African savanna herbivore through the seasonal cycle: key resources concept expanded
2014
Areas within regional landscapes that make a disproportionate contribution to supporting large herbivore populations have been interpreted as key resource areas, hotspots, buffers, stepping stones or serving other functional roles. We investigated the role that the restricted extent of habitat types exploited at different stages of the seasonal cycle might play in limiting the abundance of a blue wildebeest subpopulation in the Kruger National Park, South Africa. GPS collars enabled the space use patterns of the animals to be related to available habitat types, and faecal nutrient concentrations to be related to the habitats exploited at that time. Wildebeest herds occupied primarily grazing lawn grasslands associated with gabbro uplands or sodic lowlands through the wet season into the early dry season. During the late dry season, they switched to seep‐zone grasslands in mid slope regions of granitic landscapes. Use of recently burned areas enhanced forage quality at the beginning of the wet season. The seasonal habitat shifts enabled wildebeest to obtain adequate nitrogen, phosphorus and sodium throughout the year. Lawn and seep‐zone grasslands combined constituted 10% of the available area. Grazing lawns, which encompassed only ˜ 3% of the study area, appeared to be the primary limitation on the abundance of wildebeest. However, the greater security from predation provided by the open vegetation cover in the grazing lawns is not easily disentangled from the resource benefits that they yield. Nevertheless, findings indicate how local abundance can be restricted by the extent of portions of the landscape providing crucial benefits during particular phases of the seasonal cycle. Hence the key resources concept needs to be expanded to accommodate the functionally distinct contributions made by different habitats towards supporting local herbivore populations.
Journal Article
Changing vulnerability to predation related to season and sex in an African ungulate assemblage
2008
The consequences of predation for prey population dynamics depend on the extent to which this mortality is predisposed by malnutrition or senescence, or additive in the sense that animals that would otherwise not have died at that time were killed. In places lacking effective predators, few adult ungulates die during the summer or wet season months when food is plentifully available. Hence the seasonal distribution of predator kills as well as the age and sex classes of the prey indicates the extent to which malnutrition contributes to mortality as well as other influences on vulnerability. Using records of animal deaths assembled over 35 years in South Africa's Kruger National Park, these patterns were investigated for 12 ungulate species forming the prey of lions, and for three other large predators with respect to one prey species. Buffalo, kudu and giraffe were more strongly represented in kills made during the late dry season, while wildebeest and zebra made relatively greater contributions during the wet season. Impala, waterbuck, warthog and rarer antelope species became more prominent in kills during transitional periods between seasons. Five prey species showed an elevation in representation of males in lion kills during the mating season, as well as impala for all predator species. Females were more prominently represented in kills during the time of late gestation and parturition for three prey species. Hence reproductive activities as well as changing vegetation cover and food resources affected vulnerability to predation. Shifts in susceptibility to predation over the seasonal cycle corresponded with rainfall-related variation in the annual representation of these ungulate species in lion kills. The availability of vulnerable prey species, age and sex classes at different stages of the seasonal cycle helps maintain a high abundance of lions. These factors contribute to the strong additive impact that predation has had on the abundance of some of these ungulate populations.
Journal Article
Elephant-mediated compositional changes in riparian canopy trees over more than two decades in northern Botswana
2018
Questions: How has the composition and diversity of canopy tree species in a riparian woodland changed over time? How are the compositional changes related to impact of elephants? Does the composition of juvenile plants indicate that the woodland retains the potential to recover its former composition? Location: Northern Botswana adjoining the Linyanti River. Methods: We assessed the species composition of the riparian woodland in 2007/2008 along belt transects, recording living and dead individuals in different size classes plus signs of elephant damage and the presence of juvenile plants. We related this current composition to the composition recorded in a previous survey in 1991/1992 and reconstructed the earlier composition by combining living and dead trees recorded in 1991/1992. We established the association between mortality and impact agent, severity, year and size class using model selection statistics. Changes in species diversity were assessed using the Shannon diversity index. Results: The composition of canopy trees changed from the initial dominance of two Acacia spp. towards the current situation with these two species forming <5% of the woodland canopy. Dead trees were strongly associated with severe damage inflicted by elephants, including bark stripping and felling. As the acacia trees declined, elephant impacts shifted onto other canopy tree species. The woodland canopy became progressively more open because recruitment from juvenile and sapling stages to replace trees that had died was also suppressed. Nevertheless, the tree species that had decreased in abundance in the canopy remained abundant as juvenile plants. Conclusion: Substantial changes in woodland composition can occur in the presence of high elephant concentrations because of the selective damage that elephants impose on particular tree species and size classes. The loss of functionally important species may not be reflected by changes in compositional diversity measures.
Journal Article
Resource partitioning by grass height among grazing ungulates does not follow body size relation
2008
We compared the grass height grazed by white rhino, wildebeest, zebra and impala through the dry season months in the Hluhluwe-iMfolozi Park in South Africa. We expected that the grass height grazed would increase with the body size of the herbivore species, as suggested from past studies of resource partitioning among large mammalian herbivores. Instead we found that the largest of these species, white rhino, concentrated on the shortest grass, while the smallest species, impala, grazed heights intermediate between those grazed by wildebeest and zebra. Results suggest that the scaling of mouth width relative to body size, and hence to metabolic demands, may be the primary factor governing grass height selection, rather than body size alone. This calls into question the widespread assumption that smaller herbivores are superior competitors through being able to persist on sparser vegetation. Furthermore, there was considerable overlap in grass height grazed among these four species, indicating that niche separation by grass height is inadequate alone to explain their coexistence.
Journal Article
Controls over reproductive phenology among ungulates: allometry and tropical-temperate contrasts
2013
Ungulates inhabiting high latitudes schedule the timing of conceptions so that offspring are born during the most favourable nutritional conditions for reproductive success. The optimal period for births is less reliably predictable in tropical and subtropical savanna environments where plant growth is governed by rainfall, suggesting that reproductive phenology could be influenced more proximately by resources affecting the body condition of females around the time of conceptions. To assess how these controls operate, we compared the timing of births and conceptions among tropical and subtropical savanna ungulates with the patterns shown by ungulates in northern temperate or subarctic latitudes. The association between the timing of births and the onset of plant growth early in the growing season is less consistent among tropical savanna ungulates than among ungulates inhabiting northern temperate environments, and apparently subject to other influences affecting vegetation phenology. Nevertheless, birth peaks seem to coincide with the time of the year when forage quality is expected to be best for offspring survival and growth for most tropical or subtropical ungulates with gestation periods shorter than a year. When gestation time exceeds one year, proximal effects of nutritional conditions around the time of conceptions apparently become overriding and birth synchrony with early season plant growth is no longer effective. Proximate nutritional influences on conceptions may also govern the somewhat diffuse spread of births shown by ungulate populations in equatorial latitudes where photoperiod cues controlling oestrus and mating cannot be used to schedule the later timing of births.
Journal Article