Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Ozanic, Mateja"
Sort by:
The Divergent Intracellular Lifestyle of Francisella tularensis in Evolutionarily Distinct Host Cells
Francisella tularensis is a gram-negative, facultative, intracellular bacterium that survives in mammals, arthropods, and amoebae; however, macrophages are considered the key cells in pathogenesis of tularemia in mammals. Understanding intracellular trafficking of F. tularensis within various host cells is indispensable to our understanding of bacterial ecology, intracellular adaptation to various hosts' microenvironments, and subversion of host cell defenses. Within mammalian and arthropod-derived cells, F. tularensis transiently resides within an acidic vacuole prior to escaping to the cytosol, where the bacteria replicate. In contrast, F. tularensis resides and replicates within non-acidified, membrane-bound vacuoles within the trophozoites of amoebae. The Francisella pathogenicity island (FPI) genes encode a type VI Secretion System (T6SS), which is indispensable for phagosomal escape of F. tularensis within mammalian and arthropod cells and for intravacuolar growth within amoeba. In this review, we discuss the divergent F. tularensis intracellular lifestyle in different hosts and its role in pathogenic evolution and intracellular proliferation within diverse hosts.
The type IV pili component PilO is a virulence determinant of Francisella novicida
Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. While its ability to replicate within cells has been studied in much detail, the bacterium also encodes a less characterised type 4 pili (T4P) system. T4Ps are dynamic adhesive organelles identified as major virulence determinants in many human pathogens. In F . tularensis , the T4P is required for adherence to the host cell, as well as for protein secretion. Several components, including pilins, a pili peptidase, a secretin pore and two ATPases, are required to assemble a functional T4P, and these are encoded within distinct clusters on the Francisella chromosome. While some of these components have been functionally characterised, the role of PilO, if any, still is unknown. Here, we examined the role of PilO in the pathogenesis of F . novicida . Our results show that the PilO is essential for pilus assembly on the bacterial surface. In addition, PilO is important for adherence of F . novicida to human monocyte-derived macrophages, secretion of effector proteins and intracellular replication. Importantly, the pilO mutant is attenuated for virulence in BALB/c mice regardless of the route of infection. Following intratracheal and intradermal infection, the mutant caused no histopathology changes, and demonstrated impaired phagosomal escape and replication within lung liver as well as spleen. Thus, PilO is an essential virulence determinant of F . novicida .
The type IV pili component PilO is a virulence determinant of Francisella novicida
Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. While its ability to replicate within cells has been studied in much detail, the bacterium also encodes a less characterised type 4 pili (T4P) system. T4Ps are dynamic adhesive organelles identified as major virulence determinants in many human pathogens. In F. tularensis, the T4P is required for adherence to the host cell, as well as for protein secretion. Several components, including pilins, a pili peptidase, a secretin pore and two ATPases, are required to assemble a functional T4P, and these are encoded within distinct clusters on the Francisella chromosome. While some of these components have been functionally characterised, the role of PilO, if any, still is unknown. Here, we examined the role of PilO in the pathogenesis of F. novicida. Our results show that the PilO is essential for pilus assembly on the bacterial surface. In addition, PilO is important for adherence of F. novicida to human monocyte-derived macrophages, secretion of effector proteins and intracellular replication. Importantly, the pilO mutant is attenuated for virulence in BALB/c mice regardless of the route of infection. Following intratracheal and intradermal infection, the mutant caused no histopathology changes, and demonstrated impaired phagosomal escape and replication within lung liver as well as spleen. Thus, PilO is an essential virulence determinant of F. novicida.
Dot/Icm-Dependent Restriction of Legionella pneumophila within Neutrophils
Legionella pneumophila is commonly found in aquatic environments and resides within a wide variety of amoebal hosts. Upon aerosol transmission to humans, L. pneumophila invades and replicates with alveolar macrophages, causing pneumonia designated Legionnaires’ disease. The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is essential for lysosomal evasion and permissiveness of macrophages for intracellular proliferation of the pathogen. In contrast, we show that polymorphonuclear cells (PMNs) respond to a functional Dot/Icm system through rapid restriction of L. pneumophila . Specifically, we show that the L. pneumophila T4SS-injected amylase (LamA) effector catalyzes rapid glycogen degradation in the PMNs cytosol, leading to cytosolic hyperglucose. Neutrophils respond through immunometabolic reprogramming that includes upregulated aerobic glycolysis. The PMNs become activated with spatial generation of intracellular reactive oxygen species within the Legionella -containing phagosome (LCP) and fusion of specific and azurophilic granules to the LCP, leading to rapid restriction of L. pneumophila . We conclude that in contrast to macrophages, PMNs respond to a functional Dot/Icm system, and specifically to the effect of the injected amylase effector, through rapid engagement of major microbicidal processes and rapid restriction of the pathogen. IMPORTANCE Legionella pneumophila is commonly found in aquatic environments and resides within a wide variety of amoebal hosts. Upon aerosol transmission to humans, L. pneumophila invades and replicates with alveolar macrophages, causing pneumonia designated Legionnaires’ disease. In addition to alveolar macrophages, neutrophils infiltrate into the lungs of infected patients. Unlike alveolar macrophages, neutrophils restrict and kill L. pneumophila , but the mechanisms were previously unclear. Here, we show that the pathogen secretes an amylase (LamA) enzyme that rapidly breakdowns glycogen stores within neutrophils, and this triggers increased glycolysis. Subsequently, the two major killing mechanisms of neutrophils, granule fusion and production of reactive oxygen species, are activated, resulting in rapid killing of L. pneumophila .
An Indispensable Role for the MavE Effector of Legionella pneumophila in Lysosomal Evasion
Intracellular proliferation of Legionella pneumophila within a vacuole in human alveolar macrophages is essential for manifestation of Legionnaires’ pneumonia. Intravacuolar growth of the pathogen is totally dependent on remodeling the L. pneumophila -containing vacuole (LCV) by the ER and on its evasion of the endosomal-lysosomal degradation pathway. Diversion of the Legionella pneumophila -containing vacuole (LCV) from the host endosomal-lysosomal degradation pathway is one of the main virulence features essential for manifestation of Legionnaires’ pneumonia. Many of the ∼350 Dot/Icm-injected effectors identified in L. pneumophila have been shown to interfere with various host pathways and processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. While most single effector mutants of L. pneumophila do not exhibit a defective phenotype within macrophages, we show that the MavE effector is essential for intracellular growth of L. pneumophila in human monocyte-derived macrophages (hMDMs) and amoebae and for intrapulmonary proliferation in mice. The mavE null mutant fails to remodel the LCV with endoplasmic reticulum (ER)-derived vesicles and is trafficked to the lysosomes where it is degraded, similar to formalin-killed bacteria. During infection of hMDMs, the MavE effector localizes to the poles of the LCV membrane. The crystal structure of MavE, resolved to 1.8 Å, reveals a C-terminal transmembrane helix, three copies of tyrosine-based sorting motifs, and an NPxY eukaryotic motif, which binds phosphotyrosine-binding domains present on signaling and adaptor eukaryotic proteins. Two point mutations within the NPxY motif result in attenuation of L. pneumophila in both hMDMs and amoeba. The substitution defects of P 78 and D 64 are associated with failure of vacuoles harboring the mutant to be remodeled by the ER and results in fusion of the vacuole to the lysosomes leading to bacterial degradation. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion. IMPORTANCE Intracellular proliferation of Legionella pneumophila within a vacuole in human alveolar macrophages is essential for manifestation of Legionnaires’ pneumonia. Intravacuolar growth of the pathogen is totally dependent on remodeling the L. pneumophila -containing vacuole (LCV) by the ER and on its evasion of the endosomal-lysosomal degradation pathway. The pathogen has evolved to inject ∼350 protein effectors into the host cell where they modulate various host processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. We show that the MavE effector localizes to the poles of the LCV membrane and is essential for lysosomal evasion and intracellular growth of L. pneumophila and for intrapulmonary proliferation in mice. The crystal structure of MavE shows an NPxY eukaryotic motif essential for ER-mediated remodeling and lysosomal evasion by the LCV. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.
Francisella novicida-Containing Vacuole within Dictyostelium discoideum: Isolation and Proteomic Characterization
Francisella is a highly infectious gram-negative bacterium that causes tularemia in humans and animals. It can survive and multiply in a variety of cells, including macrophages, dendritic cells, amoebae, and arthropod-derived cells. However, the intracellular life cycle of a bacterium varies depending on the cell type. Shortly after the infection of mammalian cells, the bacterium escapes the phagosome into the cytosol, where it replicates. In contrast, in the amoebae Acanthamoeba castellanii and Hartmannella vermiformis, the bacterium replicates within the membrane-bound vacuole. In recent years, the amoeba Dictyostelium discoideum has emerged as a powerful model to study the intracellular cycle and virulence of many pathogenic bacteria. In this study, we used D. discoideum as a model for the infection and isolation of Francisella novicida-containing vacuoles (FCVs) formed after bacteria invade the amoeba. Our results showed that F. novicida localized in a vacuole after invading D. discoideum. Here, we developed a method to isolate FCV and determined its composition by proteomic analyses. Proteomic analyses revealed 689 proteins, including 13 small GTPases of the Rab family. This is the first evidence of F. novicida-containing vacuoles within amoeba, and this approach will contribute to our understanding of host–pathogen interactions and the process of pathogen vacuole formation, as vacuoles containing bacteria represent direct contact between pathogens and their hosts. Furthermore, this method can be translocated on other amoeba models.
Isolation of F. novicida-Containing Phagosome from Infected Human Monocyte Derived Macrophages
is a gram-negative bacterial pathogen, which causes tularemia in humans and animals. A crucial step of infection is its invasion of macrophage cells. Biogenesis of the -containing phagosome (FCP) is arrested for ~15 min at the endosomal stage, followed by gradual bacterial escape into the cytosol, where the microbe proliferates. The crucial step in pathogenesis of tularemia is short and transient presence of the bacterium within phagosome. Isolation of FCPs for further studies has been challenging due to the short period of time of bacterial residence in it and the characteristics of the FCP. Here, we will for the first time present the method for isolation of the FCPs from infected human monocytes-derived macrophages (hMDMs). For elimination of lysosomal compartment these organelles were pre-loaded with dextran coated colloidal iron particles prior infection and eliminated by magnetic separation of the post-nuclear supernatant (PNS). We encountered the challenge that mitochondria has similar density to the FCP. To separate the FCP in the PNS from mitochondria, we utilized iodophenylnitrophenyltetrazolium, which is converted by the mitochondrial succinate dehydrogenase into formazan, leading to increased density of the mitochondria and allowing separation by the discontinuous sucrose density gradient ultracentrifugation. The purity of the FCP preparation and its acquisition of early endosomal markers was confirmed by Western blots, confocal and transmission electron microscopy. Our strategy to isolate highly pure FCPs from macrophages should facilitate studies on the FCP and its biogenesis.
Investigation and Spatial Distribution of Hard Ticks by Geographical Information System (GIS) in the Region of Istria, Croatia
Ticks are significant vectors of pathogens in human and veterinary medicine and have been identified as (re)emerging health threats. The primary objective of this study was to collect new data on the fauna of hard ticks within the region of Istria with a focus on spatial distribution using a geographical information system (GIS). All tick specimens were collected over three years (2020–2023), and this research included all 41 self-government units of Istria and Brijuni Islands National Park. Ticks were collected using the flagging/dragging method and manually from hosts (humans, domestic, or wild animals). In addition, morphological identification using tick keys was performed. The obtained data were used to create maps and feed models and to predict risk assessments. Collected data reveal the predominant presence of Ixodes ricinus, accounting for (n = 446) or 48.1% of the tick population. Rhipicephalus sanguineus (Ixodida: Ixodidae) follows with (n = 253) or 27.23%, and Hyalomma marginatum represents (n = 136) or 14.64% of the tick species collected using the host method in the region. Tick–host relationships are complex and influenced by a range of ecological and environmental factors. The results of this research will contribute to a better understanding, identification, and prediction of the changes in their geographic ranges and help in the prevention and control of zoonosis transmitted to humans by ticks. The obtained results mapped using GIS support the first study on the spatial distribution of ticks in the region of Istria in Croatia.
Decreasing Pasteurization Treatment Efficiency against Amoeba-Grown Legionella pneumophila—Recognized Public Health Risk Factor
Legionellae are gram-negative bacteria most commonly found in freshwater ecosystems and purpose-built water systems. In humans, the bacterium causes Legionnaires’ disease (LD) or a Pontiac fever. In this study, the different waters (drinking water, pool water, cooling towers) in which Legionella pneumophila has been isolated were studied to assess the possible risk of bacterial spreading in the population. The influence of physical and chemical parameters, and interactions with Acanthamoeba castellanii on L. pneumophila, were analyzed by Heterotrophic Plate Count, the Colony-forming units (CFU) methods, transmission electron microscopy (TEM), and Sequence-Based Typing (SBT) analysis. During the study period (2013–2019), a total of 1932 water samples were analyzed, with the average annual rate of Legionella-positive water samples of 8.9%, showing an increasing trend. The largest proportion of Legionella-positive samples was found in cooling towers and rehabilitation centers (33.9% and 33.3%, respectively). Among the isolates, L. pneumophila SGs 2–14 was the most commonly identified strain (76%). The survival of Legionella was enhanced in the samples with higher pH values, while higher electrical conductivity, nitrate, and free residual chlorine concentration significantly reduced the survival of Legionella. Our results show that growth in amoeba does not affect the allelic profile, phenotype, and morphology of the bacterium but environmental L. pneumophila becomes more resistant to pasteurization treatment.