Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "Pękala Elżbieta"
Sort by:
Metabolic stability and its role in the discovery of new chemical entities
Determination of metabolic profiles of new chemical entities is a key step in the process of drug discovery, since it influences pharmacokinetic characteristics of therapeutic compounds. One of the main challenges of medicinal chemistry is not only to design compounds demonstrating beneficial activity, but also molecules exhibiting favourable pharmacokinetic parameters. Chemical compounds can be divided into those which are metabolized relatively fast and those which undergo slow biotransformation. Rapid biotransformation reduces exposure to the maternal compound and may lead to the generation of active, non-active or toxic metabolites. In contrast, high metabolic stability may promote interactions between drugs and lead to parent compound toxicity. In the present paper, issues of compound metabolic stability will be discussed, with special emphasis on its significance, metabolic stability testing, dilemmas regarding extrapolation of the results and some aspects relating to different preclinical species used in metabolic stability assessment of compounds.
Fibroblast-to-myofibroblast transition in bronchial asthma
Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor β, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.
Synthesis and Pharmacological Evaluation of Novel Silodosin-Based Arylsulfonamide Derivatives as α1A/α1D-Adrenergic Receptor Antagonist with Potential Uroselective Profile
Benign prostatic hyperplasia (BPH) is the most common male clinical problem impacting the quality of life of older men. Clinical studies have indicated that the inhibition of α1A-/α1D adrenoceptors might offer effective therapy in lower urinary tract symptoms. Herein, a limited series of arylsulfonamide derivatives of (aryloxy)ethyl alicyclic amines was designed, synthesized, and biologically evaluated as potent α1-adrenoceptor antagonists with uroselective profile. Among them, compound 9 (3-chloro-2-fluoro-N-([1-(2-(2-(2,2,2-trifluoroethoxy)phenoxy]ethyl)piperidin-4-yl)methyl)benzenesulfonamide) behaved as an α1A-/α1D-adrenoceptor antagonist (Ki(α1) = 50 nM, EC50(α1A) = 0.8 nM, EC50(α1D) = 1.1 nM), displayed selectivity over α2-adrenoceptors (Ki(α2) = 858 nM), and a 5-fold functional preference over the α1B subtype. Compound 9 showed adequate metabolic stability in rat-liver microsome assay similar to the reference drug tamsulosin (Clint = 67 and 41 µL/min/mg, respectively). Compound 9 did not decrease systolic and diastolic blood pressure in normotensive anesthetized rats in the dose of 2 mg/kg, i.v. These data support development of uroselective agents in the group of arylsulfonamides of alicyclic amines with potential efficacy in the treatment of lower urinary tract symptoms associated to benign prostatic hyperplasia.
Aclarubicin: contemporary insights into its mechanism of action, toxicity, pharmacokinetics, and clinical standing
Aclarubicin (aclacinomycin A) is one of the anthracycline antineoplastic antibiotics with a multifaceted mechanism of antitumor activity. As a second-generation drug, it offers several advantages compared to standard anthracycline drugs such as doxorubicin or daunorubicin, which could position it as a potential blockbuster drug in antitumor therapy. Key mechanisms of action for aclarubicin include the inhibition of both types of topoisomerases, suppression of tumor invasion processes, generation of reactive oxygen species, inhibition of chymotrypsin-like activity, influence on cisplatin degradation, and inhibition of angiogenesis. Therefore, aclarubicin appears to be an ideal candidate for antitumor therapy. However, despite initial interest in its clinical applications, only a limited number of high-quality trials have been conducted thus far. Aclarubicin has primarily been evaluated as an induction therapy in acute myeloid and lymphoblastic leukemia. Studies have indicated that aclarubicin may hold significant promise for combination therapies with other anticancer drugs, although further research is needed to confirm its potential. This paper provides an in-depth exploration of aclarubicin’s diverse mechanisms of action, its pharmacokinetics, potential toxicity, and the clinical trials in which it has been investigated.
Evaluation of anticonvulsant and antinociceptive properties of new N-Mannich bases derived from pyrrolidine-2,5-dione and 3-methylpyrrolidine-2,5-dione
The aim of the present experiments was to examine anticonvulsant activity of new pyrrolidine-2,5-dione and 3-methylpyrrolidine-2,5-dione derivatives in animal models of epilepsy. In addition, the possible collateral antinociceptive activity was assessed. Anticonvulsant activity was investigated in the electroconvulsive threshold (MEST) test and the pilocarpine-induced seizure models in mice. Antinociceptive activity was examined in the hot plate and the formalin tests in mice. Considering the drug safety evaluation, the Vibrio harveyi test was used to estimate anti/mutagenic activity. To determine the plausible mechanism of anticonvulsant action, for two chosen compounds ( 12 and 23 ), in vitro binding assays were carried out. All of the tested compounds revealed significant anticonvulsant activity in the MEST test. Compounds 12 and 23 displayed anticonvulsant effect also in pilocarpine-induced seizures. Four of the tested compounds ( 12 , 13 , 15 , and 24 ) revealed analgesic activity in the hot plate test as well as in the first phase of the formalin test, and all of them were active in the second phase of the formalin test. The possible mechanism of action of compounds 12 and 23 is the influence on the neuronal voltage-sensitive sodium and L-type calcium channels. The obtained results indicate that in the group of pyrrolidine-2,5-diones, new anticonvulsants with collateral analgesic properties can be found.
Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer
SummaryAlthough cisplatin is one of the most common antineoplastic drug, its successful utilisation in cancer treatment is limited by the drug resistance. Multiple attempts have been made to find potential cisplatin chemosensitisers which would overcome cancer cells resistance thus improving antineoplastic efficacy. Autophagy modulation has become an important area of interest regarding the aforementioned topic. Autophagy is a highly conservative cellular self-digestive process implicated in response to multiple environmental stressors. The high basal level of autophagy is a common phenomenon in cisplatin-resistant cancer cells which is thought to grant survival benefit. However current evidence supports the role of autophagy in either promoting or limiting carcinogenesis depending on the context. This encourages the search of substances modulating the process to alleviate cisplatin resistance. Such a strategy encompasses not only simple autophagy inhibition but also harnessing the process to induce autophagy-dependent cell death. In this paper, we briefly describe the mechanism of cisplatin resistance with a special emphasis on autophagy and we give an extensive literature review of potential substances with cisplatin chemosensitising properties related to autophagy modulation.
In Vitro Biotransformation, Safety, and Chemopreventive Action of Novel 8-Methoxy-Purine-2,6-Dione Derivatives
Metabolic stability, mutagenicity, antimutagenicity, and the ability to scavenge free radicals of four novel 8-methoxy-purine-2,6-dione derivatives (compounds 1–4) demonstrating analgesic and anti-inflammatory properties were determined. Metabolic stability was evaluated in Cunninghamella and microsomal models, mutagenic and antimutagenic properties were assessed using the Ames and the Vibrio harveyi tests, and free radical scavenging activity was evaluated with 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. In the Cunninghamella model, compound 2 did not undergo any biotransformation; whereas 3 and 4 showed less metabolic stability: 1–9 and 53–88% of the parental compound, respectively, underwent biotransformation reactions in different Cunninghamella strains. The metabolites detected after the biotransformation of 3 and 4 were aromatic hydroxylation and N-dealkylation products. On the other hand, the N-dealkylation product was the only metabolite formed in microsome assay. Additionally, these derivatives do not possess mutagenic potential in microbiological models (Vibrio harveyi and Salmonella typhimurium) considered. Moreover, all compounds showed a strong chemopreventive activity in the modified Vibrio harveyi strains BB7X and BB7M. However, radical scavenging activity was not the mechanism which explained the observed chemopreventive activity.
(+)-Usnic Acid as a Promising Candidate for a Safe and Stable Topical Photoprotective Agent
The study aimed to examine whether usnic acid—a lichen compound with UV-absorbing properties—can be considered as a prospective photoprotective agent in cosmetic products. Moreover, a comparison of two usnic acid enantiomers was performed to preselect the more effective compound. To meet this aim, an in vitro model was created, comprising the determination of skin-penetrating properties via skin-PAMPA assay, safety assessment to normal human skin cells (keratinocytes, melanocytes, fibroblasts), and examination of photostability and photoprotective properties. Both enantiomers revealed comparable good skin-penetrating properties. Left-handed usnic acid was slightly more toxic to keratinocytes (IC50 80.82 and 40.12 µg/mL, after 48 and 72 h, respectively) than its right-handed counterpart. The latter enantiomer, in a cosmetic formulation, was characterized by good photoprotective properties and photostability, comparable to the UV filter octocrylene. Perhaps most interestingly, (+)-usnic acid combined with octocrylene in one formulation revealed enhanced photoprotection and photostability. Thus, the strategy can be considered for the potential use of (+)-usnic acid as a UV filter in cosmetic products. Moreover, the proposed model may be useful for the evaluation of candidates for UV filters.
Metabolic carbonyl reduction of anthracyclines — role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents
Summary Anthracycline antibiotics (ANT), such as doxorubicin or daunorubicin, are a class of anticancer drugs that are widely used in oncology. Although highly effective in cancer therapy, their usefulness is greatly limited by their cardiotoxicity. Possible mechanisms of ANT cardiotoxicity include their conversion to secondary alcohol metabolites (i.e. doxorubicinol, daunorubicinol) catalyzed by carbonyl reductases (CBR) and aldo-keto reductases (AKR). These metabolites are suspected to be more cardiotoxic than their parent compounds. Moreover, overexpression of ANT-reducing enzymes (CBR and AKR) are found in many ANT-resistant cancers. The secondary metabolites show decreased cytotoxic properties and are more susceptible to ABC-mediated efflux than their parent compounds; thus, metabolite formation is considered one of the mechanisms of cancer resistance. Inhibitors of CBR and AKR were found to reduce the cardiotoxicity of ANT and the resistance of cancer cells, and therefore are being investigated as prospective cardioprotective and chemosensitizing drug candidates. In this review, the significance of a two-electron reduction of ANT, including daunorubicin, epirubicin, idarubicin, valrubicin, amrubicin, aclarubicin, and especially doxorubicin, is described with respect to toxicity and efficacy of therapy. Additionally, CBR and AKR inhibitors, including monoHER, curcumin, (−)-epigallocatechin gallate, resveratrol, berberine or pixantrone, and their modulating effect on the activity of ANT is characterized and discussed as potential mechanism of action for novel therapeutics in cancer treatment.