Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
220
result(s) for
"P. Huybrechts"
Sort by:
Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming
2015
Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade (2000–2010), both increased melt-water runoff and enhanced ice discharge from calving glaciers have contributed 0.6 ± 0.1 mm yr−1 to global sea-level rise, with a relative contribution of 60 and 40% respectively. Here we use a higher-order ice flow model, spun up to present day, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of 10 atmosphere and ocean general circulation models and four representative concentration pathway scenarios, the projected sea-level rise between 2000 and 2100 lies in the range of +1.4 to +16.6 cm. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to abate for the most favourable scenario where the warming peaks in this century, allowing the ice sheet to maintain a geometry close to the present-day state. For the other moderate scenario, loss rates remain at a constant level over 300 years. In any scenario, volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin, reducing the ice–ocean contact area. As confirmed by other studies, we find that the effect of enhanced basal lubrication on the volume evolution is negligible on centennial timescales. Our projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. Our results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change projections, not from ice dynamics.
Journal Article
Twentieth-Century Global-Mean Sea Level Rise
2013
Confidence in projections of global-mean sea level rise (GMSLR) depends on an ability to account for GMSLR during the twentieth century. There are contributions from ocean thermal expansion, mass loss from glaciers and ice sheets, groundwater extraction, and reservoir impoundment. Progress has been made toward solving the “enigma” of twentieth-century GMSLR, which is that the observed GMSLR has previously been found to exceed the sum of estimated contributions, especially for the earlier decades. The authors propose the following: thermal expansion simulated by climate models may previously have been underestimated because of their not including volcanic forcing in their control state; the rate of glacier mass loss was larger than previously estimated and was not smaller in the first half than in the second half of the century; the Greenland ice sheet could have made a positive contribution throughout the century; and groundwater depletion and reservoir impoundment, which are of opposite sign, may have been approximately equal in magnitude. It is possible to reconstruct the time series of GMSLR from the quantified contributions, apart from a constant residual term, which is small enough to be explained as a long-term contribution from the Antarctic ice sheet. The reconstructions account for the observation that the rate of GMSLR was not much larger during the last 50 years than during the twentieth century as a whole, despite the increasing anthropogenic forcing. Semiempirical methods for projecting GMSLR depend on the existence of a relationship between global climate change and the rate of GMSLR, but the implication of the authors’ closure of the budget is that such a relationship is weak or absent during the twentieth century.
Journal Article
Ice-sheet contributions to future sea-level change
2006
Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphere-ocean general circulation models (AOGCMs), owing, in particular, to the need to resolve the narrow and steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating mass-balance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20 km ice-sheet mass-balance model. Antarctica contributes negatively to sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding in Greenland and in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7 m.
Journal Article
Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes
2010
Synchronous acceleration and thinning of southeast (SE) Greenland glaciers during the early 2000s was the main contributor that resulted in the doubling of annual discharge from the ice sheet. We show that this acceleration was followed by a synchronized and widespread slowdown of the same glaciers, in many cases associated with a decrease in thinning rates, and we propose that ice sheet–ocean interactions are the first‐order regional control on these recent mass changes. Sea surface temperature and mooring data show that the preceding dynamic thinning coincides with a brief decline in the cold East Greenland Coastal Current (EGCC) and East Greenland Current. We suggest this decline was partly induced by a reduction in ice sheet runoff, which allowed warm water from the Irminger Current to reach the SE Greenland coast. A restrengthening of the cold waters coincides with the glaciers' subsequent slowdown. We argue that this warming and subsequent cooling of the coastal waters was the cause of the glaciers' dynamic changes. We further suggest that the restrengthening of the EGCC resulted in part from cold water input by increased glacier calving during the speedup and increased ice sheet runoff. We hypothesize that the main mechanism for ice sheet mass loss in SE Greenland is highly sensitive to ocean conditions and is likely subject to negative feedback mechanisms.
Journal Article
Surface mass balance model intercomparison for the Greenland ice sheet
by
van den Broeke, M. R.
,
Bamber, J. L.
,
Vernon, C. L.
in
Ablation
,
Analysis
,
Earth sciences & physical geography
2013
A number of high resolution reconstructions of the surface mass balance (SMB) of the Greenland ice sheet (GrIS) have been produced using global re-analyses data extending back to 1958. These reconstructions have been used in a variety of applications but little is known about their consistency with each other and the impact of the downscaling method on the result. Here, we compare four reconstructions for the period 1960–2008 to assess the consistency in regional, seasonal and integrated SMB components. Total SMB estimates for the GrIS are in agreement within 34% of the four model average when a common ice sheet mask is used. When models' native land/ice/sea masks are used this spread increases to 57%. Variation in the spread of components of SMB from their mean: runoff 42% (29% native masks), precipitation 20% (24% native masks), melt 38% (74% native masks), refreeze 83% (142% native masks) show, with the exception of refreeze, a similar level of agreement once a common mask is used. Previously noted differences in the models' estimates are partially explained by ice sheet mask differences. Regionally there is less agreement, suggesting spatially compensating errors improve the integrated estimates. Modelled SMB estimates are compared with in situ observations from the accumulation and ablation areas. Agreement is higher in the accumulation area than the ablation area suggesting relatively high uncertainty in the estimation of ablation processes. Since the mid-1990s each model estimates a decreasing annual SMB. A similar period of decreasing SMB is also estimated for the period 1960–1972. The earlier decrease is due to reduced precipitation with runoff remaining unchanged, however, the recent decrease is associated with increased precipitation, now more than compensated for by increased melt driven runoff. Additionally, in three of the four models the equilibrium line altitude has risen since the mid-1990s, reducing the accumulation area at a rate of approximately 60 000 km2 per decade due to increased melting. Improving process representation requires further study but the use of a single accurate ice sheet mask is a logical way to reduce uncertainty among models.
Journal Article
Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
2012
Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing). Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving \"shelfy stream\" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.
Journal Article
Elimination of the Greenland Ice Sheet in a High CO₂ Climate
2005
Projections of future global sea level depend on reliable estimates of changes in the size of polar ice sheets. Calculating this directly from global general circulation models (GCMs) is unreliable because the coarse resolution of 100 km or more is unable to capture narrow ablation zones, and ice dynamics is not usually taken into account in GCMs. To overcome these problems a high-resolution (20 km) dynamic ice sheet model has been coupled to the third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3). A novel feature is the use of two-way coupling, so that climate changes in the GCM drive ice mass changes in the ice sheet model that, in turn, can alter the future climate through changes in orography, surface albedo, and freshwater input to the model ocean. At the start of the main experiment the atmospheric carbon dioxide concentration was increased to 4 times the preindustrial level and held constant for 3000 yr. By the end of this period the Greenland ice sheet is almost completely ablated and has made a direct contribution of approximately 7 m to global average sea level, causing a peak rate of sea level rise of 5 mm yr−1early in the simulation. The effect of ice sheet depletion on global and regional climate has been examined and it was found that apart from the sea level rise, the long-term effect on global climate is small. However, there are some significant regional climate changes that appear to have reduced the rate at which the ice sheet ablates.
Journal Article
Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project
2015
In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The late Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of five sensitivity experiments. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, considering the models are set up with their own parameter settings. For the Pliocene, the results demonstrate the difficulty of all six models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. The specific sea-level contribution of the Antarctic ice sheet at this point cannot be conclusively determined, whereas improved grounding line physics could be essential for a correct representation of the migration of the grounding-line of the Antarctic ice sheet during the Pliocene.
Journal Article
Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet
by
Goelzer, H.
,
Perego, M.
,
Gregory, J. M.
in
Analysis
,
Earth Sciences
,
Earth sciences & physical geography
2014
We apply a new parameterisation of the Greenland ice sheet (GrIS) feedback between surface mass balance (SMB: the sum of surface accumulation and surface ablation) and surface elevation in the MAR regional climate model (Edwards et al., 2014) to projections of future climate change using five ice sheet models (ISMs). The MAR (Modèle Atmosphérique Régional: Fettweis, 2007) climate projections are for 2000–2199, forced by the ECHAM5 and HadCM3 global climate models (GCMs) under the SRES A1B emissions scenario. The additional sea level contribution due to the SMB–elevation feedback averaged over five ISM projections for ECHAM5 and three for HadCM3 is 4.3% (best estimate; 95% credibility interval 1.8–6.9%) at 2100, and 9.6% (best estimate; 95% credibility interval 3.6–16.0%) at 2200. In all results the elevation feedback is significantly positive, amplifying the GrIS sea level contribution relative to the MAR projections in which the ice sheet topography is fixed: the lower bounds of our 95% credibility intervals (CIs) for sea level contributions are larger than the \"no feedback\" case for all ISMs and GCMs. Our method is novel in sea level projections because we propagate three types of modelling uncertainty – GCM and ISM structural uncertainties, and elevation feedback parameterisation uncertainty – along the causal chain, from SRES scenario to sea level, within a coherent experimental design and statistical framework. The relative contributions to uncertainty depend on the timescale of interest. At 2100, the GCM uncertainty is largest, but by 2200 both the ISM and parameterisation uncertainties are larger. We also perform a perturbed parameter ensemble with one ISM to estimate the shape of the projected sea level probability distribution; our results indicate that the probability density is slightly skewed towards higher sea level contributions.
Journal Article
Response of the Greenland and Antarctic Ice Sheets to Multi-Millennial Greenhouse Warming in the Earth System Model of Intermediate Complexity LOVECLIM
by
Fichefet, T.
,
Goosse, H.
,
Loutre, M.-F.
in
Antarctic ice sheet
,
Antarctic ice shelves
,
Astronomy
2011
Calculations were performed with the Earth system model of intermediate complexity LOVECLIM to study the response of the Greenland and Antarctic ice sheets to sustained multi-millennial greenhouse warming. Use was made of fully dynamic 3D thermomechanical ice-sheet models bidirectionally coupled to an atmosphere and an ocean model. Two 3,000-year experiments were evaluated following forcing scenarios with atmospheric CO
2
concentration increased to two and four times the pre-industrial value, and held constant thereafter. In the high concentration scenario the model shows a sustained mean annual warming of up to 10°C in both polar regions. This leads to an almost complete disintegration of the Greenland ice sheet after 3,000 years, almost entirely caused by increased surface melting. Significant volume loss of the Antarctic ice sheet takes many centuries to initiate due to the thermal inertia of the Southern Ocean but is equivalent to more than 4 m of global sea-level rise by the end of simulation period. By that time, surface conditions along the East Antarctic ice sheet margin take on characteristics of the present-day Greenland ice sheet. West Antarctic ice shelves have thinned considerably from subshelf melting and grounding lines have retreated over distances of several 100 km, especially for the Ross ice shelf. In the low concentration scenario, corresponding to a local warming of 3–4°C, polar ice-sheet melting proceeds at a much lower rate. For the first 1,200 years, the Antarctic ice sheet is even slightly larger than today on account of increased accumulation rates but contributes positively to sea-level rise after that. The Greenland ice sheet loses mass at a rate equivalent to 35 cm of global sea level rise during the first 1,000 years increasing to 150 cm during the last 1,000 years. For both scenarios, ice loss from the Antarctic ice sheet is still accelerating after 3,000 years despite a constant greenhouse gas forcing after the first 70–140 years of the simulation.
Journal Article