Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
51
result(s) for
"Pačes, Jan"
Sort by:
Rapid gene content turnover on the germline-restricted chromosome in songbirds
2023
The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC’s genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene,
cpeb1
, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.
Songbirds have an extra chromosome with unknown function found only in their germline. This study assembles and compares this chromosome in two closely related nightingale species, finding large differences in genetic content and only one conserved gene with probable essential function.
Journal Article
The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba
2021
The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host–parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).
Journal Article
LC/MS analysis and deep sequencing reveal the accurate RNA composition in the HIV-1 virion
2019
The mechanism of action of various viruses has been the primary focus of many studies. Yet, the data on RNA modifications in any type of virus are scarce. Methods for the sensitive analysis of RNA modifications have been developed only recently and they have not been applied to viruses. In particular, the RNA composition of HIV-1 virions has never been determined with sufficiently exact methods. Here, we reveal that the RNA of HIV-1 virions contains surprisingly high amount of the 1-methyladenosine. We are the first to use a liquid chromatography-mass spectrometry analysis (LC/MS) of virion RNA, which we combined with m
1
A profiling and deep sequencing. We found that m
1
A was present in the tRNA, but not in the genomic HIV-1 RNA and the abundant 7SL RNA. We were able to calculate that an HIV-1 virion contains per 2 copies of genomic RNA and 14 copies of 7SL RNA also 770 copies of tRNA, which is approximately 10 times more than thus far expected. These new insights into the composition of the HIV-1 virion can help in future studies to identify the role of nonprimer tRNAs in retroviruses. Moreover, we present a promising new tool for studying the compositions of virions.
Journal Article
Developing molecular surveillance of SARS-CoV-2 in the Czech Republic (2021–2022)
by
Fialová, Alena
,
Nunvář, Jaroslav
,
Gančarčíková, Markéta
in
COVID-19
,
COVID-19 - epidemiology
,
COVID-19 - virology
2025
Molecular surveillance was widely used during the COVID-19 pandemic to detect rapidly emerging variants and monitor the transmission of SARS-CoV-2 within communities. In 2021, the Czech COVID-19 Genomics Consortium (COG-CZ) was set up to coordinate a new SARS-CoV-2 molecular surveillance network. In the Czech Republic, molecular surveillance employed whole genome sequencing (WGS) and variant discrimination polymerase chain reaction (VD-PCR) on samples collected through passive, active and sentinel surveillance. All WGS data was uploaded to GISAID and the PANGO lineages used by GISAID were compared to the main variants determined by VD-PCR. To assess the effectiveness and reliability of the gathered data in adapting pandemic responses, the capabilities and turnaround times of the molecular surveillance methods are evaluated. VD-PCR results were available within 48 h of sample collection for 81.5% of cases during the Delta/Omicron transition. WGS enabled the detection of low-frequency novel variants in infection clusters. WGS surveillance showed there was community spread of AY.20.1, a variant that gained novel mutations within the Czech Republic. Molecular surveillance informed the implementation of public health measures; temporal comparisons of restrictions and outcomes are described. Further areas for improvement have been identified for monitoring and managing future pandemics.
Journal Article
Hidden genes in birds
by
Hron, Tomáš
,
Pajer, Petr
,
Bartůněk, Petr
in
Animal Genetics and Genomics
,
Animals
,
Avian Proteins - genetics
2015
We report that a subset of avian genes is characterized by very high GC content and long G/C stretches. These sequence characteristics correlate with the frequent absence of these genes from genomic databases. We provide several examples where genes in this subset are mistakenly reported as missing in birds.
www.dx.doi.org/10.1186/s13059-015-0725-y
Journal Article
NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi
by
Harant, Karel
,
Šedinová, Miroslava
,
Pačes, Jan
in
Amino Acid Sequence
,
Amoeba - genetics
,
Amoeba - metabolism
2013
In most eukaryotes, the mitochondrion is the main organelle for the formation of iron-sulfur (FeS) clusters. This function is mediated through the iron-sulfur cluster assembly machinery, which was inherited from the α-proteobacterial ancestor of mitochondria. In Archamoebae, including pathogenic Entamoeba histolytica and free-living Mastigamoeba balamuthi , the complex iron-sulfur cluster machinery has been replaced by an ε-proteobacterial nitrogen fixation (NIF) system consisting of two components: NifS (cysteine desulfurase) and NifU (scaffold protein). However, the cellular localization of the NIF system and the involvement of mitochondria in archamoebal FeS assembly are controversial. Here, we show that the genes for both NIF components are duplicated within the M. balamuthi genome. One paralog of each protein contains an amino-terminal extension that targets proteins to mitochondria (NifS-M and NifU-M), and the second paralog lacks a targeting signal, thereby reflecting the cytosolic form of the NIF machinery (NifS-C and NifU-C). The dual localization of the NIF system corresponds to the presence of FeS proteins in both cellular compartments, including detectable hydrogenase activity in Mastigamoeba cytosol and mitochondria. In contrast, E. histolytica possesses only single genes encoding NifS and NifU, respectively, and there is no evidence for the presence of the NIF machinery in its reduced mitochondria. Thus, M. balamuthi is unique among eukaryotes in that its FeS cluster formation is mediated through two most likely independent NIF machineries present in two cellular compartments.
Journal Article
Long-Term Reinfection of the Human Genome by Endogenous Retroviruses
by
Pačes, Jan
,
Tristem, Michael
,
Burt, Austin
in
Biological Sciences
,
Endogenous Retroviruses - genetics
,
Endogenous Retroviruses - physiology
2004
Endogenous retrovirus (ERV) families are derived from their exogenous counterparts by means of a process of germ-line infection and proliferation within the host genome. Several families in the human and mouse genomes now consist of many hundreds of elements and, although several candidates have been proposed, the mechanism behind this proliferation has remained uncertain. To investigate this mechanism, we reconstructed the ratio of nonsynonymous to synonymous changes and the acquisition of stop codons during the evolution of the human ERV family HERV-K(HML2). We show that all genes, including the env gene, which is necessary only for movement between cells, have been under continuous purifying selection. This finding strongly suggests that the proliferation of this family has been almost entirely due to germ-line reinfection, rather than retrotransposition in cis or complementation in trans, and that an infectious pool of endogenous retroviruses has persisted within the primate lineage throughout the past 30 million years. Because many elements within this pool would have been unfixed, it is possible that the HERV-K(HML2) family still contains infectious elements at present, despite their apparent absence in the human genome sequence. Analysis of the env gene of eight other HERV families indicated that reinfection is likely to be the most common mechanism by which endogenous retroviruses proliferate in their hosts.
Journal Article
Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution
2015
Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish
Tripedalia cystophora
, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.
Journal Article
Endogenous lentivirus in Malayan colugo (Galeopterus variegatus), a close relative of primates
by
Hron, Tomáš
,
Pačes, Jan
,
Fábryová, Helena
in
Acquired immune deficiency syndrome
,
AIDS
,
Analysis
2014
Background
A significant fraction of mammalian genomes is composed of endogenous retroviral (ERV) sequences that are formed by germline infiltration of various retroviruses. In contrast to other retroviral genera, lentiviruses only rarely form ERV copies. We performed a computational search aimed at identification of novel endogenous lentiviruses in vertebrate genomes.
Findings
Using the
in silico
strategy, we have screened 104 publicly available vertebrate genomes for the presence of endogenous lentivirus sequences. In addition to the previously described cases, the search revealed the presence of endogenous lentivirus in the genome of Malayan colugo (
Galeopterus variegatus
). At least three complete copies of this virus, denoted ELVgv, were detected in the colugo genome, and approximately one hundred solo LTR sequences. The assembled consensus sequence of ELVgv had typical lentivirus genome organization including three predicted accessory genes. Phylogenetic analysis placed this virus as a distinct subgroup within the lentivirus genus. The time of insertion into the dermopteran lineage was estimated to be more than thirteen million years ago.
Conclusions
We report the discovery of the first endogenous lentivirus in the mammalian order Dermoptera, which is a taxon close to the Primates. Lentiviruses have infiltrated the mammalian germline several times across millions of years. The colugo virus described here represents possibly the oldest documented endogenization event and its discovery can lead to new insights into lentivirus evolution. This is also the first report of an endogenous lentivirus in an Asian mammal, indicating a long-term presence of this retrovirus family in Asian continent.
Journal Article
Lateral Gene Transfer and Gene Duplication Played a Key Role in the Evolution of Mastigamoeba balamuthi Hydrogenosomes
by
Pačes, Jan
,
Nývltová, Eva
,
Stairs, Courtney W
in
Acetyl CoA synthase
,
Cytosol
,
D-Lactate dehydrogenase
2015
Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.
Journal Article